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Abstract—This paper introduces HadoopViz; a MapReduce-
based framework for visualizing big spatial data. HadoopViz has
three unique features that distinguish it from other techniques.
(1) It exposes an extensible interface which allows users to define a
new visualization types, e.g., scatter plot, road network, or heat
map, by defining five abstract functions, without delving into
the implementation details of the MapReduce algorithms. As it
is open source, HadoopViz allows algorithm designers to focus
on how the data should be visualized rather than performance
or scalability issues. (2) HadoopViz is capable of generating
big images with giga-pixel resolution by employing a three-
phase technique, partition-plot-merge. (3) HadoopViz provides a
smoothing functionality which can fuse nearby records together
as the image is plotted. This makes it capable of generating more
types of images with high quality as compared to existing work.
Experimental results on real datasets of up to 14 Billion points
show the extensibility, scalability, and efficiency of HadoopViz to
handle different visualization types of spatial big data.

I. INTRODUCTION

In recent years, there has been an explosion in the amounts
of spatial data produced by several devices such as smart
phones, space telescopes, medical devices, among others. For
example, space telescopes generate up to 150 GB weekly
spatial data [31], medical devices produce spatial images (X-
rays) at a rate of 50 PB per year [12], a NASA archive of
satellite earth images has more than 1 PB and increases daily
by 25 GB [17], while there are 10 Million geotagged tweets
issued from Twitter every day as 2% of the whole Twitter
firehose [32]. Meanwhile, various applications and agencies
need to process an unprecedented amount of spatial data.
For example, the Blue Brain Project [21] studies the brain’s
architectural and functional principles through modeling brain
neurons as spatial data [30]. Meteorologists study and simulate
climate data through spatial analysis [13]. News reporters use
geotagged tweets for event detection and analysis [27].

A major need for all these applications is the ability to
visualize big spatial data by generating an image that provides
a bird’s-eye data view. Visualization is a very common tool that
allows users to quickly spot interesting patterns which are very
hard to detect otherwise. Examples of spatial data visualization
include visualizing a world temperature heat map of NASA
satellite data, a scatter plot of billions of tweets worldwide,
a frequency heat map for Twitter data showing the hot spots
of generated tweets, a road network for the whole world, or a
network of brain neurons. In all these visualization examples,
users should be able to zoom in and out in the generated image
to get different resolutions of the whole data set.
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Figure 1(a) portrays an example of visualizing the heat map
of world temperature in one month, with a total of 14 billion
points. Traditional single-machine visualization techniques [7],
[19], [22], [28] have limited performance, thus they take
around 1 hour to visualize this data on a machine with 1TB of
memory. GPUs can significantly speed up the processing [20],
[23], yet they are still hindered by the limited memory re-
sources of a single machine. Meanwhile, there exist three
distributed algorithms for visualizing spatial data [9], [26],
[33]. Two of them [26], [33] rely on a pixel-level-partitioning
phase, which partitions and groups records by the pixel they
affect, and then combines these records to calculate the color
of that pixel, which takes 25 minutes on a 40-core cluster.
The third technique [9], achieves better performance but it
relies on an expensive preprocessing phase which limits its
application. In general, these techniques suffer from three
limitations: (a) They do not support a smoothing function to
fuse nearby records together, which limits the image types they
can generate. For example, Figure 1(a) contains white spots
and strips due to missing values that need to be smoothed out.
(b) The performance degrades with giga-pixel images due to
the excessive number of pixels. (c) Each algorithm is tailored
to a specific image type, e.g., satellite images [9], [26] or 3D
triangles [33], and it cannot be used to visualize other kinds
of big spatial data, e.g., scattered points, or road networks.

This paper presents HadoopViz, an extensible MapReduce-
based framework for visualizing big spatial data. HadoopViz
overcomes the limitations of existing systems as: (a) It applies
a smoothing technique which allows it to produce more image
types that require fusing nearby records together. For example,
it produces the image in Figure 1(b) where missing values are
smoothed out by interpolating nearby points. (b) It employs
a three-phase approach, partition-plot-merge, where it auto-
matically chooses an appropriate partitioning scheme to scale
up to generate giga-pixel images. For example, it takes only
90 seconds to visualize the image in Figure 1(b). HadoopViz
uses this approach to generate both single-level images with a
fixed resolution, and multi-level images where users can zoom
in and out. (c) It proposes a novel visualization abstraction
which allows the same efficient core algorithms to be used with
dozens of image types, such as scatter plot, road networks, or
brain neurons. This allows users to focus only on designing
how the desired image should look like, while HadoopViz is
responsible of scaling it up to thousands of nodes.

Without HadoopViz, to equip a system with data visualiza-
tion, one needs to implement an algorithm for visualizing satel-
lite data [26], another algorithm for visualizing tweets [20], a
third algorithm for heatmap visualization [9], and so on. This



(a) Takes one hour on a machine with 1TB memory, and 25 minutes
on a 40-core cluster. All without the ability of recovering missing data

(b) Takes 90 seconds on HadoopViz running on a 40-core cluster and
recovers missing data

Fig. 1. Temperature Heat Map of 14 Billion Points of NASA Satellite Data (Best viewed in colors)

is not practical as each technique has its own data structure and
storage requirements. From a system point of view, the holistic
and extensible approach of HadoopViz is very appealing and
industry-friendly. One needs to realize it once in the system,
then, a wide range of various forms of visualization types are
immediately supported efficiently.

HadoopViz realizes this extensibility through five abstract
functions where all visualization algorithms in HadoopViz
are implemented using these functions, namely, smooth,
create-canvas, plot, merge, and write. Once a user
defines them, HadoopViz plugs these functions into its generic
visualization algorithms to scale image generation to thousands
of nodes and terabytes of data. (1) The optional smooth
function can be used to fuse nearby records together, e.g.,
merge intersecting road segments or recover missing values in
satellite data. (2) The create-canvas function initializes
an empty drawing on which records are plotted, e.g., it
initializes an in-memory image for drawing road network or
a 2D histogram to create a heat map. (3) The plot function
does the actual drawing of input records, e.g., it draws a line
segment in a road network or updates the histogram according
to a point location. (4) The merge function combines multiple
canvases to form the final picture, e.g., it merges two images
by blending pixel colors or merges two histograms by adding
up the values in each entry. (5) The write function generates
the final picture out of a canvas, e.g., it generates a colorful
histogram out of a frequency map, or compresses a vector
image into a standard vector image format.

This paper shows the extensibility of HadoopViz using
six examples, scatter plot, road network, frequency heat map,
satellite heat maps, vectorized map, and countries borders, all
implemented using the five abstract functions. As HadoopViz
is open source [14], users can refer to these case studies while
providing their own image types, e.g., brain neurons or traffic
data. In addition, users can reuse existing code or third party
libraries in these abstract functions to scale them out. For
example, we scale out the single-machine ImageMagick [15]
package using HadoopViz which gives it a 48X performance
boost. HadoopViz is extensively experimented with several real
datasets including the world road network (165 million poly-
lines), and NASA satellite data (14 billion points). HadoopViz
efficient design allows it to visualize NASA dataset in 90
seconds. It also generates a video (composed of 72 frames)
out of 1 trillion points in three hours on a 10-node cluster 1.

1Please refer to the generated video at http://youtu.be/-mRRBMBtDa0

The rest of this paper is organized as follows: Sec-
tion II highlights related work. Sections III and IV describe
HadoopViz algorithms for generating single and multilevel
images, respectively. Section V describes HadoopViz visual-
ization abstraction. Section VI shows six visualization case
studies using that abstraction. Section VII provides an experi-
mental evaluation. Finally, Section VIII concludes the paper.

II. RELATED WORK

This section discusses related work to HadoopViz from the
following three different angles:

Big Spatial Data. The explosion in the amounts of spatial
data has led to a plethora of research in big spatial data that
either focus on specific problems (e.g., range query, spatial
join [37], and kNN join [18]), or on building full-fledged
systems for processing big spatial data, e.g., Hadoop-GIS [1],
MD-HBase [24], SciDB [29], and SpatialHadoop [10]. Unfor-
tunately, none of these systems provide efficient visualization
techniques for big spatial data.

Big Data Visualization. Many systems were designed to
visualize non-spatial big data (e.g., [3], [16], [34]–[36]) by
downsizing the data, using sampling or aggregation, and then
visualizing the downsized data on a single machine as a
chart or histogram. For example, Ermac [36] suggests inject-
ing the visualization algorithms in the database engine so
that sampling and aggregation are done early in the query
plan. Similarly, M4 [16] rewrites SQL queries taking into
account the limited size of the generated image to perform
aggregation inside the database and return a small result
size. Bin-summarise-smooth [35] downsizes the data by bin-
ning (partitioning), summarizing (aggregation), and smoothing,
while the downsized data is visualized on a single machine.
Unfortunately, all these techniques are designed for non-spatial
data and do not apply for spatial data visualization.

Spatial Data Visualization. Major examples of visualizing
spatial data include Google and Bing Maps, which allow users
to interactively navigate through pre-generated static images.
To generate similar images for user-defined data, existing
techniques can be broadly categorized into: (a) Single-machine
techniques [4], [7], [11], [19], [22], [28] that focus on defining
how the generated image should look like per the application
needs, while the performance is out of scope. MapD [20], [23]
provides significant speedup to single machine algorithms by
employing GPU, but it is still limited to the capabilities of
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Fig. 2. Single level visualization algorithm

a single machine. (b) Distributed techniques [9], [26], [33]
that use a cluster of distributed machines for better scalability.
The pixel-level-partitioning technique [26], [33] is used to
visualize 3D meshes and satellite data by partitioning records
by the pixel they affect in the final image. SHAHED [9] uses a
spatial partitioning technique which relies on an offline phase
that indexes and cleans the data. Visualization in SHAHED
has been revamped using HadoopViz so that it performs
both partitioning and cleaning on the fly. Overall, there are
three main drawbacks to these distributed systems. (1) Not
efficient for generating big images with giga-pixel resolution.
(2) Designed to support a specific image type and cannot
directly apply to other image types. (3) They cannot produce
images in which nearby records are fused together as they do
not support a smoothing function.

HadoopViz. HadoopViz lies in the intersection of the above
three areas, by providing a framework for big spatial data
visualization. HadoopViz distinguishes itself form distributed
spatial data visualization systems [9], [26], [33] in three
main issues: (1) HadoopViz is an order of magnitude faster
than existing techniques, which makes it more plausible for
generating giga-pixel images over big data sets. (2) HadoopViz
has an extensible design where users can plug in their own
visualization logic by implementing five abstract functions.
This allows HadoopViz to support new image types without
changing the core visualization algorithms. (3) HadoopViz
supports a user-defined smoothing function which expands the
spectrum of supported image types to those which require
nearby records to be fused together as the image is generated.

III. SINGLE-LEVEL VISUALIZATION

This section explains how HadoopViz visualizes satellite
data as a single-level image, i.e., an image which shows all
the details in one level. Sections V and VI generalize the
described algorithms to other data types using the visualization
abstraction. The inputs to this algorithm are an input file to
visualize, the MBR of its contents, and the desired ImageSize
in pixels, while the output is an image of the desired size which
contains a temperature heat map, as in Figure 1(b).

Figure 2 gives an architectural view of the single-level
visualization process in HadoopViz which follows a three
phase approach where (1) the partitioning phase splits the input
into m partitions, (2) the plotting phase plots a partial image
for each partition, and (3) the merging phase combines the
partial images into one final image. This section describes two
algorithms that use this approach, default-Hadoop partitioning
(Section III-A), and spatial partitioning (Section III-B). Sec-
tion III-C describes how HadoopViz automatically chooses an
appropriate algorithm for a given visualization problem.

Algorithm 1 Visualization using default Hadoop partitioning

1: function SINGLELEVELPLOT(InFile, InMBR, ImageSize)
2: // The input is already partitioned into m partitions P1 to Pm

3: // The Plotting Phase

4: for each partition 〈Pi, BRi〉 do

5: Create a 2D matrix Ci of size ImageSize
6: Update Ci according to each point p ∈ Pi

7: end for

8: // The Merging Phase
9: Create a final matrix Cf with the desired ImageSize

10: For each reducer j, calculate Cj as the sum of all assigned matrices
11: One machine computes Cf as the sum of all Cj matrices
12: Generate an image by mapping each entry in Cf to a color
13: Write the generated image as the final output image

A. Default Hadoop Partitioning

This section describes the single-level visualization algo-
rithm which uses the default-Hadoop partitioning. As shown
in Algorithm 1, the algorithm assumes that the input is already
loaded in HDFS, which splits the input into equi-sized blocks
of 128MB each. This means that the partitioning phase has
nothing to do.

The plotting phase in Lines 3-7 runs as a part of the
map function where each mapper generates a partial image
Ci for each partition Pi, 1 ≤ i ≤ m. In Line 5, it initializes
a matrix Ci with the same size as the desired ImageSize
in pixels (width × height), which acts as a canvas to plot
records in Pi. Each entry contains two numbers, sum and
count, which, respectively, contain the summation and count
of all temperature values in the area covered by one pixel,
both initialized to zeros. These two values are used together
to incrementally compute the average temperature in each
pixel. Line 6 scans the point in the assigned partition Pi and
updates the matrix Ci according to its location and temperature.
The point location determines the matrix entry to update, the
temperature value is added to the sum entry, and the count
entry is incremented by one. Finally, the mapper writes the
matrix contents as an intermediate record to be processed
by the next merging phase. These intermediate matrices are
shuffled across the R reducers so that each reducer machine
receives an average of m/R matrices.

In the merging phase, Lines 8-13 merge all intermediate
matrices Ci, in parallel, into one final matrix Cf and writes
it as an output image. This phase runs in three steps, partial
merge, final merge, and write image. The partial merge step
runs locally in each machine where each reducer sums up all its
assigned matrices into one final matrix Cj where 1 ≤ j ≤ R.
In the final merge step, a single machine reads back the
R matrices and adds them up to a single final matrix Cf .
Figure 3(a) shows how this step overlays the intermediate
matrices into one final matrix. Finally, the write image step
in Line 13 computes the average temperature for each array
position and generates the final image by coloring each pixel
according to the average temperature of the corresponding
array position. For example, the pixels can be colored with
shades that range from blue to red between the lowest and
highest temperatures, respectively. The image is finally written
to disk as one file in a standard image format such as PNG.
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B. Spatial Partitioning

This section describes the single-level visualization algo-
rithm using spatial partitioning. It differs from the previous
algorithm in two parts, the partitioning phase uses a spatial
partitioning, and the merging phase stitches intermediate im-
ages rather than overlaying them as shown in Figure 3(b). If
the user requests a smooth image, as in Figure 1(b), then only
this algorithm is applicable. This algorithm is implemented as
a single MapReduce job as described below.

The partitioning phase runs in the map function and uses
the SpatialHadoop partitioner [8], [10] to break down the
input space into disjoint cells and assign each record to
all overlapping cells. Notice that the pixel-level partitioning
technique, employed in previous work [26], [33], is a special
case of this phase where it applies a uniform grid equal to the
desired ImageSize.

The plotting phase runs in the reduce function where all
records in each partition are grouped together and visualized
to generate one partial image. First, it applies the 2D in-
terpolation techniques employed by SHAHED [9] to recover
missing values. Unlike SHAHED, this function is applied
on-the-fly which gives more flexibility to apply different
smoothing functions. Then, the plotting phase initializes a
matrix Ci, similar to the one described in the default-Hadoop
algorithm. However, the size of this matrix is calculated
as width = ImageSize.width BRi.width

InMBR.width
and height =

ImageSize.Height BRi.height

InMBR.height
, where ImageSize is the

desired image size in pixels and InMBR is the minimum
bounding rectangle (MBR) of the input space. Finally, the
reduce function scans all records in the given partition and
updates the sum and count of the array entries as described
in the default-Hadoop algorithm.

The merging phase merges the intermediate matrices Ci
into one big matrix by stitching them together according to
their locations in the final image, as shown in Figure 3(b).
Similar to the default-Hadoop algorithm, this phase runs in
three steps, partial merge, final merge, and write image. The
partial merge step runs in the reduce-commit function, where
each reducer j ∈ [1, R] creates a matrix Cj equal to the
desired image size and adds all intermediate matrices to it.
Each matrix Ci is added to a position in Cj according to
the bounding rectangle BRi of its corresponding partition Pi.
The final merge step runs on a single machine in the job-
commit function, where it reads back the R matrices written
the previous step and adds them up into one matrix Cf . Finally
the write image step converts the final array to an image as
described earlier and writes the resulting image to the output
as the final answer.

C. Discussion

If the user needs to generate a smooth image, then only
the spatial partitioning algorithm is applicable. However, if
no smoothing is required, both techniques are applicable and
HadoopViz has to decide which one to use. By contrasting the
two techniques, we find that there is a tradeoff between the
partitioning and merging phases, where the first algorithm uses
a zero-overhead partitioning phase, and an expensive overlay
merging phase, while the second one pays an overhead in
spatial partitioning but saves with the more efficient stitching
technique in the merging phase. By intuition, the default-
Hadoop algorithm is useful as long as the plotting phase
can reduce the size of the input partitions by generating
smaller partial images. This condition holds if the desired
ImageSize in bytes is smaller than the size of one input
partition, which is equal to HDFS block capacity. Otherwise,
if the ImageSize is larger than an HDFS block, the spatial
partitioning would be more efficient as it partitions the input,
without significantly increasing its size, while ensuring that
each partition is visualized into a much smaller partial image.

To prove the above condition analytically, we measure
the overhead of the partitioning and merging phases. We
ignore the overhead of the plotting phase and writing the
output since they are the same for both algorithms. In the
default-Hadoop algorithm, the partitioning phase has a zero
overhead, and the merging phase processes m partial images,
each with a size equal to the desired ImageSize, which makes
its total cost equal to m × ImageSize. In the spatial par-
titioning algorithm, the cost of partitioning phase is equal
to the input size, as it scans the input once, and the cost
of the merging phase is equal to the size of the desired
image because partial images are disjoint and they collectively
cover the desired image size. HadoopViz decides to use the
spatial partitioning when it produces a less estimated cost, i.e.,
InputSize+ ImageSize < m× ImageSize. By rearranging
terms and substituting InputSize = m × BlockSize, the
inequality becomes (m − 1)ImageSize > m.BlockSize.
Given that m ≫ 1 for large inputs, the condition becomes
ImageSize > BlockSize as mentioned above.

IV. MULTILEVEL VISUALIZATION

This section presents HadoopViz algorithm for generating
gigapixel multilevel images where users can zoom in/out to see
more/less details in the generated image. Similar to Section III,
we focus on the case study of visualizing temperature data as
a heat map while the next two sections show how HadoopViz
is generalized to a wider range of images. Figure 4(a) gives
an example of a three-level image, also called a pyramid,
containing 1, 4, and 16 image tiles in three zoom levels, each
of a fixed default size 256× 256 pixels. Google and Bing
Maps use this type of images where the web interface allows
users to navigate through offline-generated image tiles. This
section shows how HadoopViz generates those tiles efficiently
for custom datasets, while the same Google Maps APIs are
used to view them. In addition to the input dataset and its
MBR (InMBR), the user specifies a range of zoom levels to
generate [zmin, zmax], which actually decides the image size,
by knowing the number of 256× 256 pixels tiles in each
level. The output is a set of images, one for each tile in the
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Fig. 4. Multilevel Image Visualization

desired range of zoom levels along with an HTML file that
uses Google Maps APIs to navigate these tiles.

One way to generate such multilevel images is to use our
single-level visualization algorithm, described in Section III, to
generate each tile of 256× 256 pixels. However, this solution
is not practical even for a 10-level image as it contains millions
of tiles. Another way is to generate one big image at the highest
resolution and chop it down into tiles but this is not practical
either as the size of that single big image could be hundreds
of gigabytes which does not fit on most commodity machines.
HadoopViz uses a smart algorithm which generates all the tiles
efficiently in one MapReduce job by taking into account the
structure of the pyramid.

The main idea of the multilevel visualization algorithm is
to partition the data cross machines and plot each record to
all overlapping tiles in the pyramid. The tiles that are partially
generated by multiple partitions are merged to produce one
final image for that tile. Similar to the single-level visualization
algorithms, the choice of a partitioning technique plays an im-
portant role with multilevel visualization and affects the overall
performance. This section describes two algorithms which
use default-Hadoop partitioning (Section IV-A) and a novel
coarse-grained pyramid partitioning (Section IV-B). After that,
we show how HadoopViz combines these two algorithms to
generate a user-requested image efficiently (Section IV-C).

A. Default-Hadoop Partitioning

In this section, we describe how to generate a multilevel
image with the default partitioning scheme of Hadoop. The
main idea is to allow each machine to plot a record to all
overlapping pyramid tiles, and then to apply a merging phase
which combines them to produce the final image for each tile.
Since this algorithm uses the default partitioning scheme, the
partitioning phase has a zero overhead.

The plotting phase runs in the map function and plots each
record in the assigned partition Pi to all overlapping tiles in
the pyramid. As shown in Figure 4(a), for a record p ∈ Pi,
it finds all overlapping tiles in the pyramid in all zoom levels
[zmin, zmax], as at least one tile per zoom level. For each
overlapping tile, it initializes a two-dimensional array of the
fixed tile size, e.g., 256×256, updates the corresponding entries
in the array, and caches that tile in memory in case other
records in Pi overlap the same tile again. Once all records
are plotted, all tiles, which are cached in memory, are written

as intermediate key-value pairs, where the key is the tile ID
and the value is the 2D array.

The merging phase runs in the reduce function and merges
intermediate tiles to produce the final image for each tile.
This step is necessary because the default Hadoop partitioner
might assign overlapping records to different machines and
each machine will generate a partial image for the same tile
ID, as shown in Figure 4(b). The merging phase combines all
those partial images by summing the corresponding entries into
one final image, which is finally written to disk, as done in the
single-level visualization algorithm. The image is written with
a standard naming convention ‘tile-z-c-v.png’, where z
is the zoom level of the tile and (c, r) is the position of the
tile in that zoom level.

B. Coarse-grained Pyramid Partitioning

The algorithm described above suffers from two main
drawbacks when the pyramid is very large. First, the plotting
phase incurs a huge memory footprint as it needs to keep all
tiles of the whole pyramid in main-memory until all records
are plotted. Second, the merging phase adds a huge processing
overhead for merging all these tiles. This section describes how
HadoopViz uses a novel coarse-grained pyramid partitioning
technique to avoid the drawbacks of the default partitioning
algorithm. In this technique, the input is partitioned accord-
ing to pyramid tiles [2], which ensures that each machine
generates a fixed number of tiles while totally avoiding the
merging phase. While this can be done using a traditional
fine-grained pyramid partitioning, which creates one partition
per-tile, HadoopViz uses the coarse-grained partitioning which
reduces the partitioning overhead by creating a fewer number
of partitions while ensuring the correct generation of all image
tiles. This algorithm runs in two phases only, partition and plot,
which are implemented in one MapReduce job.

The partitioning phase runs in the map function and it uses
the coarse-grained pyramid partitioning which assigns each
record p to select tiles. This technique reduces the partitioning
overhead by creating partitions for tiles only in levels that
are multiples of a system parameter k, which controls the
partitioning granularity. At one extreme, setting k = 1 is
similar to using a fine-grained partitioning where it creates
one partition per tile. On the other extreme, setting k > zmax

generates only one partition at the top of the pyramid which
contains all input records. Figure 4(c) shows an example with



k = 2 where it assigns a record p to only two partitions at
levels z = 0 and z = 2. The machine that processes each
partition will be responsible of generating the tile images in
up-to k levels rooted at the assigned partition tile.

The plotting phase runs in the reduce function and it takes
all the records in one partition, which corresponds to a tile ti,
and plots these records to all pyramid tiles under the tile t with
at most k levels. For example, in Figure 4(c), the partition at
tile t = 〈0, 0, 0〉 generates the five tiles at zoom levels 0 and 1.
Once all records are plotted, an image is generated for each
tile and all images are written to the output. No merging phase
is required for this algorithm since each tile is generated by at
most one machine.

C. Discussion

The default-Hadoop partitioning and pyramid-partitioning
algorithms complement each other in generating a multilevel
image of an arbitrary range of zoom levels, where the default-
Hadoop partitioning is used to generate the top levels, while the
pyramid partitioning is used to generate the remaining deeper
levels. For the top levels, the default-Hadoop algorithm avoids
the overhead of partitioning while the overheads of the plot
and merge phases are minimal due to the small pyramid size.
On the other hand, the pyramid partitioning algorithm would
perform poorly in top levels as each tile will contain a huge
number of records, e.g., the top tile overlaps all input records as
it covers the whole input space. In deeper levels, the algorithms
change roles as the default-Hadoop algorithm suffers from the
overhead of the plot and merge phases, while the pyramid
partitioning algorithm overcomes those limitations. Therefore,
HadoopViz defines a threshold level zθ, where levels z < zθ
are generated using default-partitioning, while other levels z ≥
zθ are generated using pyramid-partitioning.

To find the value of zθ analytically, we compare the
estimated cost of the two algorithms for a specific zoom level
z in the pyramid and find the threshold level at which pyramid
partitioning starts to give a lower cost. For the default-Hadoop
partitioning algorithm, the cost of the partitioning phase is
zero, while the cost of the merging phase is m.4z.T ileSize,
where m is the number of partitions, 4z is the number of
tiles at level z, and TileSize is the fixed size of one tile.
For the pyramid partitioning algorithm, the amortized cost of
the partitioning phase for one level is InputSize/k, because
the whole input is replicated once for each consecutive k
levels, while there is a zero overhead of the merging phase.
To find zθ, we find the range of zoom levels where pyramid
partitioning gives a less estimated cost, that is InputSize/k <
m.4z.T ileSize. By rearranging the terms and separating z, it
becomes z ≥ 1

2
lg( B

k.T ileSize
), i.e., zθ =

⌈

1

2
lg( B

k.T ileSize
)
⌉

.

V. VISUALIZATION ABSTRACTION

HadoopViz is an extensible framework that supports a wide
range of visualization procedures for various image types.
In this section, we show how the single-level and multilevel
visualization algorithms described in Sections III and IV are
generalized to handle a wide range of image types, e.g.,
scatter plot, road network, frequency heat map, and vectorized
map. To support one more image type within HadoopViz
framework, the user needs to define five abstract functions,

Algorithm 2 The abstract single-level algorithm

1: // The Partitioning Phase

2: Use spatial partitioning to create m partitions
3: // The Plotting Phase

4: for each partition 〈Pi, BRi〉 do
5: Apply smooth(Pi)

6: Ci ← create-canvas(ImageSize
BRi

InMBR
)

7: for each p ∈ Pi, plot(p, Ci)
8: end for

9: // The Merging Phase

10: Cf ← create-canvas(ImageSize)
11: for each intermediate canvas Ci, merge(Cf , Ci)
12: write(Cf , outFile)

namely, smooth, create-canvas, plot, merge, and
write. The goal is to make the designers of visualiza-
tion algorithms worry free from the scalability and detailed
implementation of their algorithms. So, algorithm designers
only think about the visualization logic, while HadoopViz is
responsible on scaling up that logic by employing thousands
of computing nodes within a MapReduce environment. For
example, ScatterDice [11] is a well known visualization system
that is used to visualize multidimensional data using scatter
plot. As HadoopViz supports scatter plot, among others, it
can complement ScatterDice by scaling out its techniques to
generate giga-pixel images of petabytes of data. HadoopViz
can similarly scale out other visualization packages such as
VisIt [6] or ImageMagick [15].

Algorithm 2 gives the pseudo-code of the abstract spatial-
partitioning single-level visualization algorithm where the five
abstract functions are used as building blocks. Any user-
defined implementations for these functions can be directly
plugged into this algorithm to generate a single-level image
using HadoopViz. In the partitioning phase, Line 2 partitions
the input spatially into m partitions, each partition i is defined
by a bounding rectangle BRi and a set of records Pi. In the
plotting phase, Line 5 applies the smooth abstract function
on each partition i to smooth its records. Line 6 in Algorithm 2
calls the create-canvas function to initialize a partial
image Ci, for each partition i. Line 7 calls the plot function to
plot each record p ∈ Pi on that partial image Ci. In the merging
phase, Line 10 calls create-canvas to initialize the final
image canvas Cf . After that, Line 11 calls merge successively
on partial canvases to merge them into the final canvas. At
the end of Algorithm 2, Line 12 uses the write function to
write the final canvas Cf to the output as an image. We omit
the abstract pseudo code of other algorithms due to limited the
space, while interested readers can refer to the source code of
HadoopViz [14]. In the rest of this section, we describe the five
abstract functions and show how they can differ according to
the visualization type. The next section gives six case studies
of how these functions are implemented in real scenarios.

A. The Smooth abstract function

This is an optional preparatory function, where the input
is the set of records that need to be visualized. The output is
another set of records that represent a smoothed (or cleaned)
version of the input by fusing nearby records together to
produce a better looking image. HadoopViz tests for the
existence of this function to decide whether to go for spatial
or default partitioning. In addition, the plotting phase calls this
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Fig. 5. Smoothing of road segments

function to smooth records in each partition before they are
visualized. In the example of satellite data described earlier,
the smooth function applies an interpolation technique to
estimate missing temperatures as shown in Figure 1. Figure 5
gives another example of smoothing the visualization of a road
network, where the smooth function merges intersecting road
segments. If no smoothing is applied, road segments will be
crossed, giving a not so accurate visualization (Figure 5(a)).
Having this logic in a user-defined abstract function allows
users to easily inject a more sophisticated logic. For example,
if more attributes are available, the smooth function can
correctly overlap (not merge) road segments at different levels
such as roads and bridges. It is important to note that the
smooth function has to be applied on the input data rather
than the generated image because it can process all input
attributes that probably disappear in the final image. One
limitation in the current design is that it cannot smooth records
across different partitions which we can support in the future.

B. The Create-Canvas abstract function

This function creates and initializes an appropriate in-
memory data structure that will be used to create the requested
image. The input to the create-canvas abstract function
is the required image resolution in terms of width and height
(e.g., in pixels). The output is an initialized canvas of the given
resolution. If the desired image is a raster image, the canvas
typically consists of a two-dimensional matrix as one per pixel.
If the desired image is a vector image, it contains a vector-
ized representation of objects shapes. The create-canvas
function is used in both the plotting and merging phases. In
the plotting phase, HadoopViz calls this function to initialize
the partial images used to plot each partition. In the merging
phase, it is used to prepare the final image on which all partial
images will be merged. For example, when visualizing a road
network, it returns an in-memory blank image of the given size,
while for a heat map, it returns a frequency map represented
as a 2D array of numbers initialized to zeros.

C. The Plot abstract function

The plot function is called for each record in the input
data set. It takes as input a canvas, previously created using
create-canvas, and a record. Then, it plots the input
record on the canvas. The plotting phase calls this function
for each record in the partition to draw the partial images.
The plot function uses a suitable algorithm to draw the
record on the canvas. For example, when visualizing a road
network, the Bresenham mid-point algorithm [5] is used to
draw a line on the image. When visualizing a heat map, this
function updates the two-dimensional histogram (created by
the create-canvas function) based on the point location.
To generate a vector image, it simplifies the record shape and
represents its geometry as a vector. In general, this function

can call any third party visualization package, e.g., VisIt [6]
or ImageMagick [15], which allows HadoopViz to easily reuse
and scale out existing visualization packages.

D. The Merge abstract function

The input to the merge function is two partial canvases,
while the output is one final canvas that is composed by
combining the two input partial layers. The merging phase calls
this function successively on a set of layers to merge them into
one. If the partial layers are disjoint, i.e., each one covers a
different part of the image, merging them is straightforward as
each pixel in the final image has only one value in one canvas.
In case the partial layers cover overlapping areas, the same
pixel in the final image may have more than one value. In this
case, the merge function needs to decide how these values are
combined together to determine the final value of that pixel.
For example, if the canvases are raster images, two pixels are
merged by taking the average of each color component in the
two pixels. In case of generating a heat map, two entries in the
histogram are merged together by adding up the corresponding
values as each one represents a partial count.

E. The Write abstract function

The write function writes the final canvas (i.e., image),
computed by the merge function, to the output in a standard
image format (e.g., PNG or SVG). This abstract function al-
lows developers to use any custom representation for canvases
which might contain additional metadata, and generate the
image as a final step using the write function. For example,
while generating a heat map, the canvas stores the frequencies
as integers while the write function transforms them into
colors and writes a PNG image. In the case of generating
vector images, the canvas contains geometric representation
of shapes and the write function encodes them in a standard
Scalable Vector Graphics (SVG) format.

VI. CASE STUDIES

This section describes six case studies of how to define a
visualization type by implementing the five abstract functions
described in Section V. These case studies are carefully
selected to cover different aspects of the visualization process.
Notice that all case studies described using the abstract func-
tions can be used to generate both single and multilevel images.
Case studies I and II give an example of non-aggregate visu-
alization, where records are directly plotted, with and without
a smoothing function. Case studies III and IV give examples
of aggregate-based visualization, where records are aggregated
before plotted, with and without a smoothing function. Case
study V gives an example of generating a vector image with a
smoothing function. Finally, case study VI shows how to reuse
and scale out an existing visualization package which is used
as a black box.

A. Case Study I: Scatter Plot

In scatter plot, the input is a set of points, e.g., geotagged
tweets, and each point is plotted as a pixel in the final image
as shown in Figure 6(a). To make HadoopViz support such
images for both single and multi-level images, we need to
define its five abstract functions as follows: (1) The smooth
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Fig. 6. Six case studies all implemented in HadoopViz via the five abstract functions
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Fig. 7. Road network visualization

function is not required for scatter plot, as there are no records
that need to be smoothed together. (2) The create-canvas

function takes an image size in pixels and returns a blank in-
memory image with the given size initialized with a transparent
background. (3) The plot function takes an in-memory image
and an input record r, and it projects the input point on the
image and colors the corresponding pixel in black. (4) The
merge function takes two in-memory images and merges them
together. To merge two images, the top-left corner of the first
image is projected to a pixel in the other one as done in the
plot function. Then, the first image is painted on the second
one at the projected location. Since each image is initialized
with a transparent background, empty spaces in one image will
reveal the contents of the other image. (5) The write function
encodes the in-memory image in a standard image format (e.g.,
PNG) and writes it to disk.

B. Case Study II: Road Network

In road network visualization, the input is a set of road
segments, each represented as a line, and the desired output
is an image similar to the one illustrated in Figure 6(b). To
support such images in HadoopViz, we need to define its five
abstract functions as follows: (1) The smooth function takes
a set of road segments, applies a buffer operation to each line
segment to give it some thickness, and then applies a union
operation to all resulting polygons to merge intersecting road
segments. Specifying a smooth function enforces HadoopViz
to use a spatial partitioning as shown in Figure 7(a). (2) The
create-canvas function is exactly the same as in scatter
plot, which returns an in-memory image of the provided size.
(3) The plot function reads the result of the union operation
returned by the smooth function, and draws each polygon
in the dataset onto the image. The polygon is first projected
from input space to image space, then, the interior of the
polygon is filled with yellow while the boundaries are stroked
in black. As spatial partitioning is used, some records might
be replicated to two overlapping partitions such as r1 in
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Figure 7(a). Each replica is merged with a different set of
road segments and is plotted to two different partial images.
However, it is automatically clipped at partition boundaries
when plotted (denoted by dotted lines). (4) The merge function
is exactly the same as in the scatter plot where one image is
painted on the other according to its location. Notice that in this
case, it will always stitch partial images together because they
are all disjoint. As in Figure 7(a), the two images are clipped at
the stitch line, hence, putting them side-by-side generates the
correct picture without worrying about any overlaps. (5) The
write function is exactly the same as in the scatter plot.

To justify the use of a smoothing function, Figure 7(b)
shows how the visualization process would work if no smooth

function is provided. First, HadoopViz would use the default
Hadoop partitioning which causes overlapping records to be in
two different partitions. The plot function can still apply the
buffer operation to each segment but not the merge operation
because overlapping records are in two different machines. The
merge function would overlay partitions instead of stitching
them. Depending on which image goes on top, there are two
possible final images which are both incorrect.

C. Case Study III: Frequency Heat Map

In this case study, the input is a set of points, e.g.,
geotagged tweets, and the output is a colored map, e.g.,
Figure 6(c), where dense areas are colored in red and sparse
areas are colored in blue. To support such kind of visualization
in HadoopViz, we need to define the five abstract functions
as follows: (1) The smooth function is not needed for such
image type. (2) The create-canvas function creates a two-
dimensional array of integers (called, frequency map), where
the value in each entry represents the number of records around
it; all initialized with zeros. (3) The plot function, takes one
point, projects it to the frequency map, and increments all
entries within a predefined radius ρ to denote that the point is
within the range of those pixels. As more points are plotted,



entries in the frequency map will denote the density of points in
each pixel, as shown in Figure 8. (4) The merge function takes
two frequency maps, and merges them together by adding up
corresponding entries in both. (5) The write function takes
one frequency map and converts it to an image by coloring
corresponding pixels in the image according to the density
in the frequency map. First, it normalizes densities to the
range [0, 1], and then it calculates the color of each pixel by
making a linear combination between the two colors, blue and
red. Finally, the created image is written to the output in the
standard PNG format.

D. Case Study IV: Satellite Data

In this case study, the input is a set of temperature readings,
each associated with a geolocation, and the output is a tem-
perature heat map, like the one in Figure 6(d), where the color
represents the average temeprature of the underlying region. In
addition, some regions do not contain any values due to clouds
or satellite mis-alignment leaving some blind spots [9]. The
values in those uncovered areas need to be estimated using
a two-dimensional interpolation technique. To support such
image type in HadoopViz, we need to define the five abstract
functions as follows: (1) The smooth function takes a set of
points in a region and recovers missing points using a two-
dimensional interpolation function in a way similar to SHA-
HED [9]. Although HadoopViz uses the same technique as in
SHAHED, it applies the smooth function on-the-fly allowing
users to easily inject a better smoothing function. (2) The
create-canvas function initializes a two-dimensional array
of the input size where each entry contains two numbers, sum
and count, used together to compute the average temperature
incrementally. (3) The plot function projects a point onto
the 2D array, and updates both sum and count in the array
according to the temperature value of the point. (4) The merge

function is very similar to that of the frequency heat map but
it adds up both sum and count in the merged layers. (5) The
write function starts by calculating the average temperature
in each entry as avg = sum/count. Then, we use the same
write function of the frequency heat maps.

E. Case Study V: Vectorized Map

This case study shows how to create a vector image that
represents a map, such as Google Maps or Bing Maps. Many
recent applications on smart phones and on the web prefer
vector images over raster images due to their smaller size and
nice rendering. For simplicity, this case study explains how
to plot a map of lakes as shown in Figure 6(e), however, the
technique can be easily expanded to plot more map objects
through more sophisticated implementations of the plot func-
tion. To generate a vector image for lakes in HadoopViz, we
define the abstract functions as follows: (1) In the smooth

abstraction function, we use a map simplification algorithm
which reduces the amounts of details in the polygons according
to the resolution of the final image. The goal of this function
is to reduce the generated image size by removing very fine
details that will be hardly noticed by users according to the
image size. If a multilevel image is generated, the smooth

function will be called once for each zoom level so that it
keeps more details in deeper levels. This function also removes
very small lakes which are too small to plot in the image.

(2) The create-canvas abstract function initializes an empty
list of polygons. (3) The plot function adds the polygon
representation of the lake geometry to the list of polygons
in the canvas. (4) The merge function, simply, merges the two
lists of polygons in the two canvases into one list in the output
canvas. (5) The write function encodes the canvas contents
as a standard SVG image and writes it to the output.

F. Case Study VI: Parallel ImageMagick

ImageMagick [15] is a popular open source package that
can produce and edit images. However, it is single-machine and
does not support any multi-node parallelization functionality.
This case study shows how to use the binaries of ImageMagick
as a blackbox and utilize the extensibility of HadoopViz
to seamlessly parallelize it. This allows users to visualize
extremely large datasets using ImageMagick that it cannot
handle otherwise. For example, this technique speeds up the
visualization of a 130GB file from four hours on a single
machine, to five minutes using HadoopViz. In this case study,
the input is a set of straight line segments that represent the
administrative borders in the whole world (e.g., countries and
cities) which need to be visualized as shown in Figure 6(f). To
visualize the input as lines in the final image, we define the
five functions as follows: (1) No smooth function is needed.
(2) The create-canvas function spawns an ImageMagick
process in the background and sends it a ‘viewbox’ command
to initialize an image with the desired size. (3) The plot

function projects a line from the input to the image space,
and send the ImageMagick process a ‘draw line’ command
with the projected boundaries. As HadoopViz needs to transfer
canvases from mappers to reducers, it cannot simply move
a running process. So, to transfer a canvas, we close the
ImageMagick instance and transfer the generated image across
network. (4) The merge function uses the ‘draw image’ Im-
ageMagick command to draw one image onto the other image.
(5) The write function closes the ImageMagick process of the
final canvas, retrieves the image created by that instance, and
writes it to the output as a file.

VII. EXPERIMENTS

This section provides an experimental evaluation for
HadoopViz to show its extensibility and scalability. All
HadoopViz experiments are conducted on a cluster of 20
nodes of Apache Hadoop running on Ubuntu 10.04.4 machines
with Java 1.7. Each machine has an Intel(R) Xeon E5472
processor with 4 cores @3 GHz, 8GB of memory and a
250GB hard disk. The HDFS block size is 128 MB. All
single machine experiments run on a machine with 12 cores
of Intel(R) Haswell E5-2680v3 CPU @ 2.50GHz and 1TB
memory. In all experiments, we use total execution time as
the main performance metric of our experiments.

For the input data, we use three real datasets extracted from
OpenStreetMap [25], namely, nodes, ways, and lakes, in
addition to one satellite dataset from NASA called nasa. The
nodes dataset (1.7 billion points) is used for case studies I and
III, the ways dataset (165 million polylines) for case studies
II and VI, the lakes dataset (8.4 million polygons) for case
study V, and the nasa dataset (14 billion points) for case study
IV. For experiments repeatability, OpenStreetMap and NASA
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Fig. 9. Single Level Image Performance

datasets are made available at the two following links, re-
spectively. http://spatialhadoop.cs.umn.edu/datasets.html#osm
- http://e4ftl01.cr.usgs.gov/MOLA/MYD11A1.005/.

A. Single-Level Visualization

For single-level image visualization, we consider seven
different algorithms where each is applied in suitable experi-
ments. (1) A single-machine algorithm which loads the whole
dataset into main-memory, smooths records in memory, scans
records and plots them to an in-memory image, and finally
writes that image to the output. (2) Distributed pixel-level-
partitioning [26], [33] which is implemented in HadoopViz
using a uniform grid partitioning with a grid size equal to
image size. (3, 4, 5) HadoopViz with default Hadoop parti-
tioning, grid, and R+-tree partitioning. (6, 7) HadoopViz with
grid-based and R+-tree-based indexes which utilize an existing
index to avoid the spatial partitioning phase.

Figure 9(a) compares the performance of HadoopViz with
R+-tree partitioning to the single-machine algorithm, as they
are both applied to the six case studies described in Section VI
to visualize a 32 mega-pixels image. This experiment shows
an order of magnitude speedup of HadoopViz as compared to
traditional single machine algorithms. It also shows the flex-
ibility and efficiency of HadoopViz when used with different
image types using the single level algorithm. For example, it
visualizes 14 Billion points of NASA data in a 90 seconds.
Case study V runs relatively faster as it operates on the much
smaller lakes dataset. The figure also shows the power of
HadoopViz as it provides a 48X speedup of the single-machine
ImageMagick visualization package.

In Figure 9(b), we change the input size of the road
network, by sampling at 25%, 50% and 75%, while fixing the
image size at 32 mega-pixels. HadoopViz outperforms both
single machine and pixel-level-partitioning algorithms for all
input sizes. The performance of pixel-level-partitioning is very
poor as it has to process 32 Million partitions, as one per pixel.
At this image size, pixel-level-partitioning is even slower than
a single machine which relies on a huge main memory of 1TB.

Figure 9(c) gives the effect of changing the desired image
size from 2 to 160 mega-pixels. This experiment runs on
the scatter plot case study as it does not contain a smooth

function which allows for the use of default Hadoop partition-
ing. This figure shows clearly that pixel-level partitioning is
only useful with a small image sizes of less than 20 mega-
pixels. The single-machine algorithm is slightly affected by
the image size as it performs all processing in main-memory
after the file is loaded from disk. On the other hand, all

techniques in HadoopViz scale very well with the generated
image size making it useful for generating both small and
big images. As described in Section III, the default Hadoop
partitioning performs better with small images while spatial
R+-tree partitioning performs better with big images. This
experimentally justifies the decision made in the partitioning
phase where it switches from default Hadoop partitioning to
spatial partitioning when image size grows larger than a block
size. Although this condition holds at the points at 50 and 72
mega-pixels, while the performance crossover happens at 80
mega-pixels, the difference is very small and both techniques
perform very similar. This experiment also employs the in-
dexed R+-tree technique which skips the spatial partitioning
phase by utilizing an existing R+-tree index constructed using
SpatialHadoop [10]. As shown, this technique outperforms all
other techniques as it gets the good performance of R+-tree
partitioning without having to pay the overhead of partitioning.

Figure 9(d) shows how HadoopViz scales out with cluster
size when visualizing a heat map as compared to a single
machine algorithm. This figure also shows that HadoopViz
scales out very nicely with cluster size as it parallelizes all
of the three phases of the algorithm. Even with five machine,
it outperforms the single-machine algorithm.

Figure 10(a) gives the effect of tuning number of partitions
m on HadoopViz running with grid and R+-tree partition-
ing. We cannot compare with default Hadoop partitioning as
number of partitions is automatically calculated by HDFS
according to input size and HDFS block capacity. We change
number of partitions from 60 to 6 Million to cover the
spectrum of all values which are all shown on a log scale. Grid
partitioning performs poorly on both extremes where it suffers
from load imbalance at m = 60 and 600, and huge processing
overhead at m = 6 Million. On the other hand, R+-tree-based
partitioning is very stable when m changes from 60 to 600K,
then the performance suddenly drops at m = 6 Million. The
reason of this huge drop is that the partitioning phase has to
search 6M rectangles for each input record to find overlapping
partitions. This incurs a huge overhead even with an optimized
in-memory R+-tree index with logn search time, as opposed
to constant time in uniform grid partitioning.

Figure 10(b) breaks down the time of single-level plot
in HadoopViz into the three phases. In this experiment, we
skip the smooth function to be able to apply default Hadoop
partitioning. The indexed R+-tree and indexed grid techniques
are denoted X-G and X-R, respectively. At the small image
size generated in this experiment (4 MegaPixels), the default
Hadoop partitioning performs very well where the plotting
phase accounts for most of the time. On the other hand, both
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Fig. 10. Single-level image tuning with case study II

spatial partitioning techniques, grid and R+-tree, are much
slower due to the overhead of the partitioning phase. Although
the grid partitions very quickly, it performs poorly in the
plotting phase due to load imbalance. Existing indexes save
the partitioning time of both techniques making R+-tree much
better than grid. To conclude, we recommend the use of R+-
tree if the smooth and plot functions are complex to achieve
a better load balance. Otherwise, a grid partitioning can be used
when these functions are simple as it saves in the partitioning
time. If no smooth function is required, default partitioning is
good enough.

B. Multilevel Visualization

In multilevel visualization, we compare the performance of
three techniques. (1) A single-level machine algorithm which
builds the whole pyramid in main-memory and then dumps
it to disk as one image per tile. (2) HadoopViz with default-
Hadoop partitioning. (3) HadoopViz with pyramid partitioning.

Figure 11(a) compares the performance of a traditional
single-machine algorithm to HadoopViz for visualizing a mul-
tilevel image. In this experiment, we generate a pyramid of 11
levels, which resembles a 70 giga-pixel image at the highest
level. The experiment shows up-to two orders of magnitude
speedup of HadoopViz as compared to a single machine
algorithm. The speedup is much higher compared to single-
level experiments, in Figure 9(a), due to the huge output size
which is written to a single disk in single-machine experiment,
as opposed to the HDFS in HadoopViz. This experiment also
shows the great power and flexibility of HadoopViz as these
multilevel images are created using the same five abstract
functions that were used to implement the single-level images.
In other words, users do not need to do any additional effort,
other than defining the five functions, to generate multilevel
images.

Figure 11(b) gives the performance of generating a pyramid
of six levels using default partitioning and single-machine
algorithms. As the input size increases from 41M polygons to
165M polygons, the performance of the single machine drops
as it needs to read and parse the whole input file. On the other
hand, HadoopViz scales very well as the scanning of the input
is done in parallel using the MapReduce framework.

Figure 12(a) gives the performance of both default and
pyramid partitioning algorithms in HadoopViz while gener-
ating each level in the pyramid. This experiment confirms
our earlier discussion that default-partitioning performs better
at top levels while pyramid-partitioning performs better at
deeper levels. At top-levels, default partitioning performs better
as it avoids the overhead of partitioning while the cost of
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merging is still low. On the other hand, pyramid partitioning
performs poorly due to the load imbalance as the top levels
contain only a few tiles. At deeper levels, the performance
of default partitioning drops due to the huge number of tiles
that need to be shuffled over network and then merged. In
this experiment, it failed at levels six and higher with an out-
of-memory exception due to the huge pyramid size that has
to be stored in each machine. On the other hand, pyramid
partitioning performs better as it partitions the input into
thousands of tiles improving the load balance. The running
time increases again at deeper levels due to the exponential
increase in the size of the output which cannot be avoided.
According to the system configuration and the analysis made in
Section IV-C, HadoopViz should use pyramid-partitioning for
levels five and higher. Although default-Hadoop partitioning
algorithm performs better at level five, the difference is slight
and both algorithms perform well.

Figure 12(b) shows the scalability of HadoopViz with
cluster size where we increase the cluster size from 5 to 20
and measure the performance of generating an image with 11
levels with zθ = 4. This experiment shows a near perfect scale
out for both algorithms due to the parallelization of all of the
phases in both algorithms. It also shows a huge speedup over
the baseline of single-machine performance. Deeper levels (5
to 10) take much more time due to the exponential increase in
number of tiles.

In Figure 12(c), we change the grouping granularity (k) to
verify its effect on the performance of the pyramid partitioning
algorithm. This parameter was introduced in Section IV-B to
control the trade-off between load balance and partitioning
overhead by grouping multiple pyramid levels in one partition.
As expected, a smaller value of k provides a poor performance
as it produces too many partitions. On the other extreme, using
a large value of k produces a few partitions hurting the load
balance. Both values of 3 and 4 provide good performance
as they achieve a good balance between load balance and
partitioning overhead.

Figure 12(d) shows the percentage breakdown of the pro-
cessing time of HadoopViz into the three phases. Default-
partitioning algorithm spends most of its time in the plotting
phase while the merging phase takes less time. The reason
is that the plotting phase processes the whole input and
produces partial pyramids of small sizes while the merging
phase processes these partial pyramids in parallel to produce
the final answer. On the other hand, the pyramid-partitioning
algorithm finishes the partitioning phase quickly while most
of the time is spent in the plotting phase which draws the final
tiles directly and writes them to the output.
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Fig. 12. Multilevel image performance tuning with case study II

VIII. CONCLUSION

In this paper, we presented HadoopViz; a MapReduce-
based framework for visualizing big spatial data. HadoopViz
can efficiently produce giga-pixel images for billions of input
records. There are three main features in HadoopViz which
make it unique to other visualization systems. (1) HadoopViz
uses a smoothing technique to produce better looking images
by fusing nearby records together. (2) HadoopViz can effi-
ciently produce giga-pixel images by employing a three-phase
technique, partition-plot-merge. This technique is applied to
generate both single level and multilevel images. (3) It is
extensible as it allows users to plug-in their own visualization
logic by only implementing five abstract functions. HadoopViz
takes these functions and plugs them in ready-made algorithms
which allow the user-defined algorithms to automatically run
on thousands of nodes. We use the defined abstraction to
implement six visualization types, scatter plot, road network,
frequency heat map, satellite heat map, vectorized map, and
countries borders. We experimentally evaluate HadoopViz us-
ing real datasets on a cluster of 20 machines and show up-
to two orders of magnitude speedup over existing techniques
with an excellent scalability as it visualizes 14 Billion points
in 90 seconds.
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