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Abstract

There is a recent outbreak in the amounts of spatial data generated by different sources, e.g., smart

phones, space telescopes, and medical devices, which urged researchers to exploit the existing dis-

tributed systems to process such amounts of spatial data. However, as these systems are not designed for

spatial data, they cannot fully utilize its spatial properties to achieve high performance. In this paper, we

describe SpatialHadoop, a full-fledged MapReduce framework which extends Hadoop to support spatial

data efficiently. SpatialHadoop consists of four main layers, namely, language, indexing, query process-

ing, and visualization. The language layer provides a high level language with standard spatial data

types and operations to make the system accessible to non-technical users. The indexing layer supports

standard spatial indexes, such as grid, R-tree and R+-tree, inside Hadoop file system in order to speed

up spatial operations. The query processing layer encapsulates the spatial operations supported by

SpatialHadoop such as range query, k nearest neighbor, spatial join and computational geometry oper-

ations. Finally, the visualization layer allows users to produce images that describe very large datasets

to make it easier to explore and understand big spatial data. SpatialHadoop is already used as a main

component in several real systems such as MNTG, TAREEG, TAGHREED, and SHAHED.

1 Introduction

With the recent explosion in the amounts of spatial data, many researchers are trying to process these data effi-

ciently using the distributed systems that run on hundreds of machines such as Hadoop and Hive. Unfortunately,

most of these systems are designed for general data processing and this generality comes with the price of a

sub-par performance with spatial data. Therefore, there are active research projects which try to extend these

system to well support spatial data. Most notably, ESRI released a suit of GIS tools for Hadoop [15] which inte-

grates Hadoop with their flagship ArcGIS product. Hadoop-GIS [2] extends Hive with a grid index and efficient

implementation of range and self-join queries. Similarly, MD-HBase [12] extends HBase with Quad tree and
K-d tree indexes for point datasets and support range and kNN queries.

In this work, we describe the recent work in SpatialHadoop [6], a full-fledged system for spatial data which

extends Hadoop in its core to efficiently support spatial data. SpatialHadoop is available as an open source soft-

ware at http://spatialhadoop.cs.umn.edu/ and has been already downloaded around 80,000 times. SpatialHadoop

consists of four main layers, namely, language, indexing, query processing, and visualization. In the language

layer, SpatialHadoop provides a high level language, termed Pigeon [5], which provides standard spatial data

types and query processing for easy access to non-technical users. The indexing layer provides efficient spatial

indexes, such as grid, R-tree, and R+-tree, which organize the data nicely in the distributed file system. The

indexes are organized in two levels, one global index that partitions the data across machines, and multiple

local indexes that organize records in each machine. The query processing layer encapsulates a set of spatial

operations that ship with SpatialHadoop including basic spatial operations, join operations and computational
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Figure 1: Overview of SpatialHadoop

geometry operations. The visualization layer allows users to explore big spatial data by generating images that

provide bird’s-eye view on the data. SpatialHadoop is already used in several real systems, such as SHAHED [7],

TAREEG [3], MNTG [11], and TAGHREED [10].

2 Overview of SpatialHadoop

Figure 1 gives an overview of SpatialHadoop. SpatialHadoop runs on a cluster containing one master node, that

breaks a MapReduce job into smaller tasks, and multiple slave nodes that carry out these tasks. The core of

SpatialHadoop consists of four main layers, namely, language, indexing, query processing, and visualization,

described briefly below.

(1) The Language layer contains Pigeon [5], a high level language with OGC-compliant spatial data types

and functions. Pigeon is discussed in Section 3. (2) The Indexing layer provides standard spatial indexes, such

as grid, R-tree, and R+-tree, which are used to store the data in an efficient way in the Hadoop Distributed File

System (HDFS). Indexes are organized in two-layers, one global index that partitions data across nodes, and

multiple local indexes to organize records inside each node. These indexes are made available to the MapRe-

duce programs through two new components, namely, SpatialFileSplitter and SpatialRecordReader. The spatial

indexing layer is described in Section 4. (3) The Query Processing layer encapsulates the spatial operations

supported by SpatialHadoop. This includes basic operations, join operations, and CG Hadoop [4] which is a

suite of fundamental computational geometry operations. Developers and researchers can enrich this layer by

implementing more advanced spatial operations. The supported operations are discussed in Section 5. (4) The

Visualization layer provides efficient algorithms to visualize big spatial data by generating images that give a

bird’s-eye view to the data. SpatialHadoop supports single level images, which are generated at a fixed resolu-

tion, and multilevel images, which are generated at multiple resolutions to allow users to zoom in. The details

of the visualization layer is provided in Section 6.

The core of SpatialHadoop is designed to serve as a backbone for applications that deal with large scale data

processing. In Section 7, we describe SHAHED [7] as a case study of a real system which uses SpatialHadoop

to analyze and visualize large scale satellite data.
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3 Language Layer: Pigeon

Most MapReduce-based systems require huge coding efforts, therefore, they provide easy high level languages

that make them usable by non-technical users, such as, HiveQL [14] for Hive and Pig Latin [13] for Hadoop.

SpatialHadoop does not provide a completely new language, instead, it provides, Pigeon [5], which extends Pig

Latin language [13] by adding spatial data types, functions, and operations that conform to the Open Geospatial

Consortium (OGC) standard [1]. In particular, we add the following:

1. OGC-compliant spatial data types including, Point, LineString, and Polygon. Since Pig Latin does

not allow defining new data types, Pigeon overrides the bytearray data type to define spatial data types.

Conversion between bytearray and geometry, back and forth, is done automatically on the fly which

makes it transparent to end users.

2. Basic spatial functions which are used to extract useful information from a single shape; e.g., Area calcu-

lates the area of a polygonal shape.

3. OGC-standard spatial predicates which return a Boolean value based on a test on the input polygon(s). For

example, IsClosed tests if a linestring is closed while Touches checks if two geometries touch each other.

4. Spatial analysis functions which perform some spatial transformations on input objects such as calculating

the Centroid or Intersection. These functions are usually used to performs a series of transformations

on input records to produce final answer.

5. Spatial aggregate functions which take a set of spatial objects and return a single value which summarizes

all input objects; e.g., the ConvexHull returns one polygon that represents the minimal convex polygon that

contains all input objects.

In addition to the functions in Pigeon, we do the following changes to the language.

1. KNN Keyword. A new keyword KNN is added to perform a k-nearest neighbor query.

2. FILTER. To support a range query, we override the Pig Latin selection statement, FILTER, to accept a

spatial predicate as an input and calls the corresponding procedure for range queries.

3. JOIN. To support spatial joins, we override the Pig Latin join statement JOIN to take two spatial files as

input. The processing of the JOIN statement is then forwarded to the corresponding spatial join procedure.

4 Spatial Indexing

Traditional Hadoop stores data files in the Hadoop Distributed File System (HDFS) as heap files. This means

that the data is partitioned into HDFS blocks, of 64 MB each, without taking the values of the records into

consideration. While this is acceptable for traditional queries and applications, it results in a poor performance

for spatial queries. There exist traditional spatial indexes, such as the R-tree [8], however, they are designed for

the local file system and traditional procedural programming, hence, they are not directly applicable to Hadoop

which uses HDFS and MapReduce functional programming. HDFS is inherently limited as files can be only

written in sequential manner and, once written, cannot be modified.

To overcome the limitations of traditional spatial indexes, SpatialHadoop proposes a two-layer spatial index

structure which consists of one global index and multiple local indexes. The global index partitions data into

HDFS blocks and distributes them among cluster nodes, while local indexes organize records inside each block.

The separation of global and local indexes lends itself to the MapReduce programming paradigm where the

global index is used while preparing the MapReduce job while the local indexes are used for processing the

map tasks. In addition, breaking the file into smaller partitions allows each partition to be indexed separately in

memory and dumping it to a file in a sequential manner. SpatialHadoop uses this two-level design to build a grid

index, R-tree and R+-tree.

Figure 2 shows an example of an R-tree index built in SpatialHadoop for a 400 GB dataset of all map objects

in the world extracted from OpenStreetMap. Blue lines represent data while black rectangles represent partition
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Figure 2: R-tree index of a 400 GB OpenStreetMap dataset representing all map objects (Best viewed in color)

boundaries of the global index. As shown in this example, SpatialHadoop adjusts the size of each partition

based on data distribution such that the total size of the contents of each partition is 64MB which ensures load

balancing. Records in each partition are stored together as one HDFS block in one machine.

The index is constructed in one MapReduce job that runs in three phases. (1) The partitioning phase divides

the space into n rectangles, then, it partitions the data by assigning each record to overlapping rectangles. The

challenge in this step is how to adjust these rectangles such that the contents of each partition is around 64 MB

of data to fit in one HDFS block. To overcome this challenge, we first calculate the desired number of partitions

by dividing the input file size |S| by the HDFS block capacity B, i.e., n = |S|/B. Then, for the grid index, we
partition the space using a uniform grid of size

√
n × √

n assuming uniformly distributed data. For R-tree and

R+-tree, we draw a random sample from the input file, and bulk load this sample into an in-memory R-tree of

n leaf nodes using the STR algorithm [9]. Then, the boundaries of the leaf nodes are used to partition the file

assuming that the random sample is representative for data distribution. (2) In the local indexing phase, each

partition is processed separately on a single machine and a local index is constructed in memory before it is

dumped to disk. Since the partitioning phase adjusts the size of each partition to be of a single HDFS block, it

becomes possible for each machine to completely load it into memory, build the index, and write it to disk in

a sequential manner. (3) The final global indexing phase constructs a global index on the master node which

indexes all HDFS blocks in the file using their MBRs as indexing key. The global index is kept in the main

memory of the master node and it provides an efficient way to select file blocks in a specific range.

Once the data is stored efficiently in the file system as indexes, we need to add new components that allow

MapReduce programs to use them. Without these new components, the traditional MapReduce components

shipped with Hadoop will not be able to make use of these indexes and will treat them as heap files. Therefore,

SpatialHadoop adds two new components, namely, SpatialFileSplitter and SpatialRecordReader. The Spatial-

FileSplitter takes a spatially indexed input file and a user-defined filter function and it exploits the global index

in the input file to prune partitions that do not contribute to answer. The SpatialRecordReader takes a locally

indexed partition returned by the filter function and exploits its local index to retrieve the records that match the

user query. These two components allow developers to implement many spatial operations efficiently as shown

in the next section.
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Figure 3: Spatial Queries in SpatialHadoop

5 Query Processing

The efficient indexes and the new MapReduce components introduced in the indexing layer give the core of

SpatialHadoop that enables the possibility of efficient realization of many spatial operations. In this section,

we show a few case studies of three categories of operations, namely, basic operations, join operations and

computational geometry operations. Developers can follow similar techniques to add more operations such as

kNN join or reverse nearest neighbor operations.

5.1 Basic Operations

SpatialHadoop contains a number of basic spatial operations such as range query and k-nearest neighbor query.

A range query takes a set of spatial records R and a query area A as input, and returns the records that overlap

with A. SpatialHadoop exploits the global index with the SpatialFileSplitter to select only the partitions that

overlap the query range A. Then, it uses the SpatialRecordReader to process the local indexes in matching

partitions and find matching records. Finally, a duplicate avoidance step filters out duplicate results caused by

replication in the index. Although this algorithm is efficient as it quickly prunes non-relevant partitions, it takes

considerable time for very small ranges due to the overhead imposed by Hadoop for starting any MapReduce job.

Therefore, if the query range is very small, i.e., matches only a few partitions, the algorithm can be implemented

on a single machine without starting a MapReduce job, which provides an interactive response [7, 10].

5.2 Join Operations

Join operations are usually more complex as they deal with more than one file. In a spatial join query, the input

consists of two sets of spatial records R and S and a spatial join predicate θ, e.g., overlaps, and the output is
the set of all pairs 〈r, s〉 where r ∈ R, s ∈ S, and the join predicate θ is true for 〈r, s〉. SpatialHadoop proposes
a MapReduce-based algorithm where the SpatialFileSplitter exploits the two global indexes to find overlapping

pair of partitions as illustrated in Figure 3(a). The map function uses the SpatialRecordReader to exploit the two

local indexes in each pair to find matching records. Finally, a duplicate avoidance step eliminates duplicate pairs

in the answer caused by replication in the index.

5.3 CG Hadoop

CG Hadoop [4] is a suite of computational geometry operations for MapReduce. It supports five fundamental

computational geometry operations, namely, polygon union, skyline, convex hull, farthest pair, and closest pair,

all implemented as MapReduce algorithms. We show the skyline algorithm as an example while interesting

readers can refer to [4] for further details.
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Figure 4: Visualization

In the skyline operation, the input is a set of points P and the output is the set of non-dominated points. A

point p dominates a point q if p is greater than q in all dimensions. CG Hadoop adapts the existing divide-and-

conquer skyline algorithm to Hadoop as a MapReduce program. Furthermore, CG Hadoop utilizes the spatial

index constructed using SpatialHadoop to prune partitions that are outside the query range. A partition ci is
pruned if all points in this partition are dominated by at least one point in another partition cj , in which case we
say that cj dominates ci. For example in Figure 3(b), c1 is dominated by c5 because the top-right corner of c1
(i.e., best point) is dominated by the bottom-left corner of c5 (i.e., worst point). The transitivity of the skyline

domination rule implies that any point in c5 dominates all points in c1. In addition, the partition c4 is dominated
by c6 because the top-right corner of c4 is dominated by the top-left corner of c6 which means that any point
along the top edge of c6 dominates all points in c4. Since the boundaries of each partition are tight, there has to
be at least one point along each edge.

6 Visualization

The visualization process involves creating an image that describes an input dataset. This is a natural way to

explore spatial datasets as it allows users to find interesting patterns in the input which are otherwise hard to

spot. Traditional visualization techniques rely on a single machine to load and process the data which makes

them unable to handle big spatial data. SpatialHadoop provides a visualization layer which generates two types

of images, namely, single level image and multilevel images, as described below.

6.1 Single Level Image Visualization

In single level image visualization, the input dataset is visualized as a single image of a user-specified image size

(width × height) in pixels. SpatialHadoop generates a single level image in three phases. (1) The partitioning
phase partitions the data using either the default non-spatial Hadoop partitioner or using the spatial partitioner in

SpatialHadoop depending on whether the data needs to be smoothed or not. Figure 4(a) shows an example of vi-

sualizing a road network without smoothing where intersecting road segments are overlapping each other, while

Figure 4(b) shows the correct and desired image where intersecting road segments are merged (i.e., smoothed).

If a smooth function is needed, we have to use a spatial partitioner to ensure that intersecting road segments

are processed by the same machine and can be merged. (2) In the rasterize phase, the machines in the cluster

process the partitions in parallel and generate a partial image for each partition. If the default Hadoop partitioner

is used, each partial image has the same size of the final desired image because the partition contains data from

all over the input space. On the other hand, if a spatial partitioner is used, each partial image would be of a small

size according to the region covered by the associated partition. (3) In the merging phase, the partial images are

combined together to produce the final image. If a non-spatial partitioner is used, partial images are overlaid as
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Figure 5: Analyzing and Visualizing Satellite Data using SHAHED

they all have the size of the final image as shown in Figure 4(c). On the other hand, if a spatial partitioner is

used, the merging phase stitches partial images together as shown in Figure 4(d).

6.2 Multilevel Image Visualization

The quality of a single level image is limited by its resolution which means users cannot zoom in to see more

details. Therefore, SpatialHadoop also supports multilevel images which consist of small tiles produced at

different zoom levels as shown in Figure 4(e). The input to this algorithm is a dataset and a range of zoom

levels [zmin, zmax] and the output is all image tiles in the specified range of levels. A naı̈ve approach is to use

the single level image algorithm to generate each tile independently but this approach is infeasible due to the

excessive number of MapReduce jobs to run. For example, at zoom level 10, there will be more than one million

images which would require running one million MapReduce jobs. Alternatively, SpatialHadoop provides a

more efficient algorithm that runs in two phases only, partition and rasterize. (1) The partition phase scans all

input records and replicates each record r to all overlapping tiles in the image according to the MBR of r and
the MBR of each tile. This phase produces one partition per tile in the desired image. (2) The rasterize phase

processes all generated partitions and generates a single image out of each partition. Since the size of each

image tile is small, a single machine can generate that tile efficiently. This technique is used in [7] to produce

temperature heat maps for NASA satellite data.

7 Case Study: SHAHED

The core of SpatialHadoop is used in several real applications that deal with big spatial data including

MNTG [11], a web-based traffic generator; TAREEG [3], a MapReduce extractor for OpenStreetMap data;

TAGHREED [10], a system for querying and visualizing twitter data, and SHAHED [7], a MapReduce system

for analyzing and visualizing satellite data which is further discussed in this section. SHAHED is a tool for

analyzing and exploring remote sensing data publicly available by NASA in a 500 TB archive. It provides a

web interface (Figure 5(a)) where users navigate through the map and the system displays satellite data for the

selected area.

SHAHED uses the indexing layer in SpatialHadoop to organize satellite data in a uniform grid index as the

data is uniformly distributed. Furthermore, it builds an aggregate-quad-tree local index inside each grid cell

to speed up both selection and aggregate queries. On top of the spatial index, it provides a multi-resolution

temporal index which organizes data in days, months and years. For example, in the daily level, it builds a
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separate spatial index for each day, while in the months level, it builds one index for each month. The goal is to

provide efficient query processing for both small and large temporal ranges.

In the query processing layer, it provides both selection and aggregate spatio-temporal queries where the

input is a data set, e.g., temperature, a spatial range represented as a rectangular region on the map and a

temporal range provided as a date range on the calendar (see Figure 5(a)). In selection queries, all values in

the chosen dataset and spatio-temporal range are either returned to the user as a file to download, or further

processed to produce an image as shown below. In aggregate queries, only the minimum, maximum and average

values are returned.

SHAHED also makes use of the visualization layer to visualize satellite data. The results of the selection

query are visualized as a satellite heat map. For example, it is used to generate a temperate heat map for the

whole world, as shown in Figure 5(b), which consists of a total of 500 Million points. If a date range is selected

instead of a single date, an animating video is generated which shows the change of temperature over the selected

time 1. SHAHED also uses the multilevel image visualization technique to precompute heatmaps for different

datasets over the whole world and allow users to navigate these datasets on a web interface by overlaying the

generated images over the world map and updating them as the user navigates.
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