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1. INTRODUCTION

Hadoop [17] is a framework designed to efficiently proceggehu
ABSTRACT amounts of data in a distributed fashion. It employs the MahRe
programming paradigm [11], which abstracts a parallel pog
into two functions,map and reduce The map function maps a
single input record to a set of intermediate key value pgir®),
while thereducefunction takes all values associated with the same

Hadoop, employing the MapReduce programming paradigm, has
been widely accepted as the standard framework for analyz-
ing big data in distributed environments. Unfortunatelljst

rich framework was not truly exploiteq towards. processiaigé- key and produce the final answer. The simplicity and flexioi
scale computational geometry operations. This paperdoties g \apReduce paradigm allow Hadoop to be employed in severa

CG_Hadoop; a suite of scalable and efficient MapReduce algo- |5.5e-scale anplications including machine learnin _bvte
rithms for various fundamental computational geometnbfams, so?ting [29] ;npd graph processir?g [14]. 9 [1p-by

namely,polygon unionskyling convex hullfarthest pai andclos- In the meantime, there is a recent tremendous increase icesev
est pair which present a set of key components for other geo- ,nq appjications that generate enormous rates of spatéal Ba-
metric algorithms. For each computational geometry ofTat 5 mpjes of such devices include smart phones, space tetssfgjp
CG_Hadoop has two versions, one for the Apache Hadoop Sys-, medical devices [28,35]. Such amount of Big Spatial Dalla

tem and one for the SpatialHadoop system; a Hadoop-based syS¢o, he need to take advantage of the MapReduce programming

tem that is more suited for spatial operations. These pespat paradigm [11] to solve various spatial operations. Amoregrtiost
gorithms form a nucleus of a comprehensive MapReduce Yibrar i 5ortant spatial operations is the family of ComputatidBeom-

of computational geometry operations. Extensive experiaige- etry algorithms that are concerned with representing andking
sults on a cluster of 25 machines of datasets up to 128GB ShOWwith geometric entities in the spatial domain. Examplesafhs
that CG_Hadoop achieves up to 29x and 260x better perfornanc o erations include convex hull, skyline, union, and fasteosest
than traditional algorithms when using Hadoop and Spasidtiop pairs. Although there exist well established computafigeame-
systems, respectively. try algorithms for such problems [5, 33], unfortunatelyciswalgo-
rithms do not scale well to handle modern spatial datasetshwh

Categories and Subject Descriptors can contain, for instance, billions of points. For examptemput-
ing a convex hull for a data set of 4 billion points using a iiadal
algorithm may take up to three hours, while computing thenini
of a data set of 5M polygons takes around one hour and fails wit
a memory exception for larger data sets.

In this paper, we introduce CG_Hadoop; a suite of scalalde an
General Terms efficient MapReduce algorithms for various fundamental jgom
tational geometry problems, namepglygon union skyling con-

1.3.5 [Computational Geometry and Object Modeling: Ge-
ometric algorithms; H.2.8 Qatabase Applicationg: Spatial
databases and GIS

Algorithms vex hull farthest pair andclosest pair which present a set of key
components for other geometric algorithms [5, 33]. CG_Hado
Keywords achieves order(s) of magnitude better performance thditioaal
Hadoop, MapReduce, Geometric Algorithms computational geometry algorithms when dealing with lesgale
spatial data. For each computational geometry operati@eninw
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cluster. Yet, CG_Hadoop has to adapt traditional compnati 2.2 SpatialHadoop

algorithms to work better in the MapReduce environment. éxer SpatialHadoop [12] is a comprehensive extension to Hacdoaip t
ample, unlike traditional algorithms which usually divitiee in- enables efficient processing of spatial operations. Maihlyro-
put in half and do multiple rounds, CG_Hadoop divides thaitnp  yides a two-layered spatial index in the Hadoop storager lagtéa
into smaller chunks to ensure that the answer is computeden o jmplementations of Grid file [26] and R-tree [16] indexingalso
MapReduce round, which is preferable for both Hadoop and Spa enriches the MapReduce layer with new components that aew

tialHadoop. In addition, we use the distributed spatiabi®@s pro-  jng the spatial index structures within MapReduce prografite
vided in SpatialHadoop, whenever possible, to speed updite ¢ pyilt-in indexes in SpatialHadoop help in building efficierigo-
putations by early pruning input chunks that do not contsbio rithms for several spatial operations.

the answer of the computational geometry operation oféster The spatial index in SpatialHadoop is organized as giobal

CG_Hadoop, source code available as part of SpatialHadoopindexand multiplelocal indexes The global index partitions data
at http://spatialhadoop.cs.umn.eddiérms a nucleus of a compre-  across cluster nodes while the local indexes organize datdei

hensive MapReduce library of computational geometry djmers. each node. The new added components in the MapReduce layer
Its open-source nature will act as a research vehicle farat utilize both the global and local indexes to prune file piantis
searchers to build more computational geometry algorittimas and records, respectively, that do not contribute to thevansThe

take advantage of the MapReduce programming paradigmnExte  pruning criteria is determined through a user defifiléer function

sive experiments on a cluster of 25 machines using both rehl a  \yhich is provided as part of the MapReduce program.
generated datasets of sizes up to 128GB show that CG_Hadoop

achieves up to 29x and 260x better performance than traditid- 2.3 Computational Geometry Operations
gorithms when using Hadoop and SpatialHadoop systemseesp  As indicated earlier, CG_Hadoop forms a nucleus of a com-
tively. prehensive MapReduce library of computational geometmr-op

The rest of this paper is organized as follows. Section 2sgive  ations. Currently, CG_Hadoop includes five fundamentalr-ope
brief necessary background. MapReduce algorithms fordhe p ations, namelyUnion, Skyline Convex Hull Farthest pair and

gon union, skyline, convex hull, farthest pair, and clogst op- Closest Pair Below, we give a brief definition of each operation.
erations are given in Sections 3 to 7. Section 8 gives an exper Union. The union of a sef of polygons is the set of all points that
mental evaluation. Related work is discussed in Sectiontflew lie in at least one of the polygons i, where only the perimeter
Section 10 concludes the paper. of all points is kept while inner segments are removed. Eidifa)

gives a sample input to the polygon union operation as a s&iFof
2. BACKGROUND code areas, while Figure 1(b) gives the union result.

Skyline. Consider the set of point® in Figure 1(c). Pointp;

|€ P dominatespoint p; € P if each of the coordinates qf; is
greater than or equal to the corresponding coordinaie; ofvith
strictinequality in at least one dimension. Tiglineof P consists
2.1 Hadoop of those points ofP that are not dominated by any other point of

Hadoop [17] is an open-source framework for data processing £ (€-9- Figure 1(d)). In the computational geometry literef the
on large clusters. A Hadoop cluster consists of one maste no SKYline points are usually called maximal points [33].

and several slave nodes. The master node stores meta itiftmma  COnvex Hull. The convex hull of a set of point& is the small-
about files (e.g., name and access rights) while slave nades s €St convex polygon that contains all pointsi as given in Fig-

the actual data in files (e.g., records). A file is usually apkd to ure 1(e). The output of the convex hull operation is the rsoioitm-
the Hadoop Distributed File System (HDFS) before it is psseel ing the convex hull ordered in a clockwise direction. .
where the file is split into chunks of 64MB (called blocks). eTh Farthfest Pair. Given a set of pomtsP,.the farthest pair is the pair
master node keeps track of how the file is split and where each Of Points that have the largest Euclidean distance betweem.t
block is stored, while slave nodes store the data blocksnaioay As shown in Figure 1(e), the two points contributing to thetfest
with a regular file system, the master node stores the fileatiion pair have to lie on the convex hull. . .
table or INodes, while slave nodes store data in files. Closest Pair. Given a set of pointd, the closest pair is the pair
A MapReduce program [11] configures a MapReduce job and of.points that have the smallest Euclidean distance betilesn
submits it to the master node. A MapReduce job contains afset o (Figure 1()).
configuration parameters such as thap function and the input
file. The master node breaks this job into sevenap tasksand 3. UNION
reduce tasksind run each one on a slave node. It also breaks the A traditional algorithm for the polygon union operation [33
input file into splits and assigns each split to a slave nodeeto  computes the union of two polygons by computing all edgesrint
processed as a map task. The map task parses its assigried splsections, removing all inner segments, and leaving onlynseds
using the configuretecord readerand produces a set of key-value  on the perimeter. For more than two polygons, we start with on
pairs (k1,v1) which are sent to thenapfunction to produce a set  polygon, add other polygons to it one by one and compute tie&un
of intermediate pairgks, v2). Intermediate pairs are grouped by with each polygon added. In PostGIS [32], this operation loan
k2 and thereducefunction collects all intermediate records with  carried out using the following SQL query where the colupemm
the same key and processes them to generate a set of finalgecor stores polygon information of each ZIP code.

This section gives a background about Hadoop [17] and Spatia
Hadoop systems as the two platforms used in CG_Hadoop as wel
as the set of computational geometry operations in CG_Hadoo

(ks,v3) which are stored as the job output in HDFS files. SELECT ST_Uni on(zi p_codes. geom

MapReduce and Hadoop have been widely adopted by major in- FROM zi p_codes;
dustry, e.g., Google [11], Yahoo! [9] Dryad in Microsoft [1&as- In this section, we introduce two polygon union algorithros f
sandra in Facebook [19], and Twitter [20]. It has also beeatelyi Hadoop and SpatialHadoop. We use input dataset in Figuyad(a
employed in several large-scale applications including:hire a clarification example. For ease of illustration and withoss of
learning [13], tera-byte sorting [29], and graph proceg$ir]. generality, the example has non-overlapped polygons.
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Figure 1: Computational Geometry Operations covered by CGHadoop
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Figure 2: Polygon union in Hadoop

3.1 Union in Hadoop

The main idea of our Hadoop polygon union algorithm is to
allow each machine to accumulate a subset of the polygoms, an
then let a single machine combine the results from all mashin
and compute the final answer. Our algorithm works in threpsste
partitioning, local union andglobal union The partitioning step
distributes the input polygons into smaller subsets eaolled by
one machine. This step is performed by the Hadioopd fil e
command which splits the file into chunks of 64MB storing each
one on a slave node. In thecal unionstep, each machine com-
putes the union of its own chunk using a traditional in-memor
polygon union algorithm. As each chunk is at most of size 64MB
the in-memory algorithm works fine regardless of the sizehef t
input file. This step is implemented in Hadoop asombinefunc-
tion, which runs locally in each machine. After performirget
local union, each machine ends up with a set of polygons ¢paier
sent the union of all polygons assigned to this machine.dlbigal
union step is implemented in Hadoop asealucefunction, which
runs on a single machine to compute the final answer. The eeduc
function takes the output of all local unions, combines thieta
one list, and computes their union using the traditionahiemory
algorithm. Each machine will end up with only few polygongkn
ing it possible to do the union using the in-memory algorithm

By taking advantage of a set of parallel machines, rather tha
performing all the work in a single machine, our proposealg
rithm achieves orders of magnitude better performancettietrof
traditional algorithms. Although there is an overhead irtifan-
ing the data to multiple machines, and then collecting thewen
from each machine, such overhead is offset by the cost savierg
parallel machines, which can be seen in large-scale spatiakets.
For interested readers, who are familiar with MapReducgnar-
ming paradigm, the pseudocode of our Hadoop polygon union al
gorithm is given in Appendix A.1.
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Figure 3: Polygon union in SpatialHadoop

Figure 2 gives the partitioning and local union steps of tiput
dataset of Figure 1(a) over four cluster computing nodesrevh
each polygon is assigned to one node. The decision of whida no
belongs to which partition is completely taken by the Hadlwaul
file component, where it basically assigns polygons to nodes
domly. As a result, and as can be seen in the figure, some paygo
assigned to one node might remain completely disjoint afben-
puting the union. In this case, all these polygons are writbethe
output. Then, all nodes send their output to a single maackirieh
computes the final answer as given in Figure 1(b)

3.2 Union in SpatialHadoop

Our polygon union algorithm in SpatialHadoop has the same
three steps as our algorithm in Hadoop. The only differeadhat
the partitioning step in SpatialHadoop is done in a spgtialiare
manner, as given in Figure 3, where adjacent polygons aignass
to the same machine. The main reason here is that we utikze th
underlying index structure in SpatialHadoop to be able $tritiute
polygons over nodes. In particular, we use the R-tree imdeixi
SpatialHadoop, where the size of each R-tree node is 64MB, to
dump all the entries in each R-tree node to one node clustere S
by definition, an R-tree node provides a cluster of adjaceht-p
gons, especially, that all R-trees in SpatialHadoop ark loalded,
then we guarantee that all polygons in the same node areeadljac

Although the local and global union steps remain the sanes, th
become much lighter. The local union step mostly produces on
output polygon, rather than a set of polygons as in Hado@reth
fore, the global union step processes fewer polygons. Inegur
ample, the number of polygons resulting from the local urstap
drops from 28 polygons in Hadoop to only four polygons in Spa-
tialHadoop making the whole algorithm significantly fast@he
pseudocode for the polygon union algorithm in SpatialHadiso
exactly the same as that of Hadoop (Appendix A.1).



4. SKYLINE

A traditional in-memory two-dimensional skyline algoritf33]
uses a divide and conquer approach where all points aralipiti
sorted by their coordinates and divided into two subsets of equal
size separated by a vertical line. Then, the skyline of eathi$
computed recursively and the two skylines are merged to atenp
the final skyline. To merge two skylines, the points of the -
line are scanned in a non-decreasingrder, which implies a non-
increasingy order, and each one is compared to the left most point
of the right skyline. Once a point on the left skyline is doatid,
it is removed along with all subsequent points on the lefliaky
and the two lists of remaining points from both skylines ava-c
catenated together. The skyline operator is not nativetypsted
in database management systems. Yet, it is of considernatelest
in the database literature, where the focus is mainly on-biésed
algorithms (e.qg., see [7, 31]) withreon-standardSQL query.

SELECT * FROM poi nts
SKYLI NE OF d1 MAX, d2 MAX;

In this section, we introduce our two skyline algorithms for
Hadoop and SpatialHadoop, while using input dataset in Fig-
ure 1(c) as an illustrative example.

4.1 Skyline in Hadoop

Our Hadoop skyline algorithm is a variation of the tradiabdi-
vide and conquer skyline algorithm [33], where we divideitiput
into multiple (more than two) partitions, such that eachtipan
can be handled by one machine. This way, the input needs tie be d
vided across machines only once ensuring that the answaunsl f
in one MapReduce iteration. Similar to our Hadoop polygoionin
algorithm, our Hadoop skyline algorithm works in three stgar-
titioning, local skyline andglobal skyline The partitioning step
divides the input set of points into smaller chunks of 64MBlea
and distributes them across the machines. Irdbal skylinestep,
each machine computes the skyline of each partition assignié
using the traditional algorithm, and outputs only the noméhated
points. Finally, in theglobal skylinestep, a single machine collects
all points of local skylines, combines them in one set, amdpmaes
the skyline of all of them. Notice that skylines cannot be geer
using the technique used in the in-memory algorithm as tbal lo
skylines are not separated by a vertical line, and may dgtoér-
lap. This is a result of Hadoop partitioning which distribsitthe
points randomly without taking their spatial locationimiccount.
The global skyline step computes the final answer by comginin
all the points from local skylines into one set, and applythg
traditional skyline algorithm. Readers familiar with MagdRice
programming can refer to Appendix A.2 for pseudocode.

This algorithm significantly speeds up the skyline compatat

compared to the traditional algorithm by allowing multipiea-
chines to run independently and in parallel to reduce thetisjze
significantly. For a uniformly distributed dataset of sizpoints, it
is expected that the number of points on the skylir@ (kg n) [4].
In practice, for a partition of size 64MB with around 700K i,
the skyline only contains a few tens of points for both real ani-
formly generated datasets. Given this small size, it besdieasi-
ble to collect all those points in one single machine that mates
the final answer.

4.2 Skyline in SpatialHadoop

Our proposed skyline algorithm in SpatialHadoop is veryilsim
to the Hadoop algorithm described earlier, with two mainngjes.
First, in thepartitioning phase, we use the SpatialHadoop parti-
tioner when the file is loaded to the cluster. This ensuresttiea
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Figure 4: Skyline in SpatialHadoop

data is partitioned according to an R-tree instead of rangdarti-
tioning, which means that local skylines from each machieaan
overlapping. Second, we apply an exiifeer step right before the
local skyline step. Théilter step, runs on a master node, takes as
input the minimal bounding rectangles (MBRs) of all pastited
R-tree index cells, and prunes those cells that have no ehanc
contributing any point to the final skyline result.

The main idea of the neilter step is that a celt; dominates
another celk; if there is at least one point i that dominates all
points inc;, in which case; is pruned. For example, in Figure 4,
cell ¢; is dominated by;; because the bottom-left cornergf(i.e.,
worst point) dominates the top-right corner@f(i.e., best point).
The transitivity of the skyline dominance relation impligsit any
point incs dominates all points in;. Similarly, ¢4 is dominated by
ce¢ because the top-left corner @f dominates the top-right corner
of ¢4. This means that any point along the top edgesafominates
the top-left corner ofs, and hence, dominates all pointsdn As
the boundaries of a cell are minimal (because of R-treetjuarti
ing), there should be at least one point/obn each edge. We can
similarly show that celts is also dominated by.. So, our pruning
technique in thdilter step is done through a nested loop that tests
every pair of cellsc; and ¢; together. We compare the top-right
corner ofc; against three corners of (bottom-left, bottom-right,
and top-left). If any of these corners dominates the toptrigrner
of ¢;, we prunec; out from all our further computations, and do not
assign it to any node. Hence, we will not compute its localisky
nor consider it in the global skyline step.

It is important to note that applying this filtering step indd@p
will not have much effect, as the partitioning scheme used in
Hadoop will not help in having such separated MBRs for differ
ent cells. The SpatialHadoop skyline algorithm has muclebet
performance than its corresponding Hadoop algorithm afltae
ing step prunes out many cells that do not need to be processed.
Interested readers can refer to Appendix A.2 for the pseadiof
the filter step.

5. CONVEX HULL

The convex hull shown in Figure 1(e) can be computed as
the union of two chains using Andrew’s Monotone Chain algo-
rithm [3]. First, it sorts all points by their coordinates and iden-
tifies the left-most and right-most points. Then, the upgeirc
of the convex hull is computed by examining every three conse
utive pointsp, ¢, r, in turn, from left to right. If the three points
make a non-clockwise turn, then the middle pajig skipped as it
cannot be part of the upper chain and the algorithm then dersi
the pointsp, r, s, wheres is the successor of;, otherwise the al-
gorithm continues by examining the next three consecutiietp
q, v, s. Once the rightmost point is reached, the algorithm con-
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Figure 5: Convex hull in SpatialHadoop

tinues by computing the lower chain in a similar way by chaegki

all points of P from right to left and doing the same check. Using
PostGIS [32], the convex hull can be computed by a single SQL
query using the functio®T_ConvexHul | . Since this function
takes one record as argument, points have to be first combined
one line string using the functio®T_Makel i ne.

SELECT ST_ConvexHul | ( ST_Makel i ne(poi nts. coord))
FROM poi nt s;

In this section, we introduce two convex hull algorithms for
Hadoop and SpatialHadoop, while using input dataset in Fig-
ure 1(c) as an illustrative example.

5.1 Convex Hull in Hadoop

Our Hadoop convex hull algorithm is very similar to our Hadoo
skyline algorithm, where we start by @artitioning phase to dis-
tribute the input data into small chunks such that each cHitsk
in memory. Then, thdocal convex hullof each subset is calcu-
lated using the traditional in-memory algorithm [3] andyotiiose
points forming the convex hull are retained. The points fralin
convex hulls in all machines are combined in a single macttiae
computes thglobal convex hullwhich forms the final answer, us-
ing the traditional in-memory convex hull algorithm. Sianilto
skyline, the number of points on the convex hull is expecteblet
O(logn) [10] for uniform data, making this algorithm very effi-
cient in pruning most of the points when computing the loadl h
and allowing the global hull to be computed in one node.

5.2 Convex Hull in SpatialHadoop

The convex hull algorithm in Hadoop processes more file parti
tions than necessary. Intuitively, the parts of the file #vattowards
the center do not contribute to the answer. In SpatialHadoep
improve the convex hull algorithm by early pruning thosetitians
that do not contribute to answer. The key idea is that anytfpsin
the convex hull must be part of at least one of the four skgline
of the dataset (max-max, min-max, max-min, and min-min).[33
A max/min-max/min skyline considers that maximum/minimum
points are preferred im-y dimensions. This property allows us to
reuse the skylinéltering step in Section 4.2. As given in Figure 5,
we apply the skyline algorithm four times to select the piarts
needed for the four skylines and take the union of all thesg-pa
tions as the ones to process. Clearly, a partition that doesam-
tribute to any of the four skylines will never contribute teetfinal
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Figure 6: Farthest pair algorithm in SpatialHadoop

convex hull. Once the partitions to be processed are séleitte
algorithm works similar to the Hadoop algorithm in Sectioh By
computing the local convex hull of each partition and thembim-

ing the local hulls in one machine, which computes the globak

vex hull. The gain in the SpatialHadoop algorithm comes fthen
spatially-aware partitioning scheme that allows for thengmg in
thefiltering step, and hence the cost saving in both local and global
convex hull computations. For interested readers, thedusmae

of the SpatialHadoop convex hull algorithm is in Appendis8A.

6. FARTHEST PAIR

A nice property of the farthest pair (shown in Figure 1(eYhist
the two points forming the pair must lie on the convex hull bf a
points [34]. This property is used to speed up the processitige
farthest pair operation by first computing the convex hhkrtfind-
ing the farthest pair of points by scanning around the cormeek
using the rotating calipers method [33]. In this section,imteo-
duce our farthest pair algorithms for Hadoop and Spatiatidpd

6.1 Farthest Pairin Hadoop

A Hadoop algorithm for the rotating calipers method [33] \ebu
complete the convex hull first as discussed in Section 6.&nTa
single-machine will need to scan all the points in the cortvelk,
which may be a bottleneck based on the number of points in the
convex hull. In that case, it may be better to develop a Haddop
gorithm based on parallelizing the brute-force approadaniiest
pair algorithm, which calculates the pairwise distanceg/een ev-
ery possible pair of points and select the maximum. The Houte
approach will be expensive for very large input files, yet éynie
used if it is not feasible for one machine to calculate thénhst
pair from the points in the convex hull as in the rotating pats
method. Overall, both the brute force and rotating calipeesh-
ods have their own drawbacks when realized in Hadoop.

6.2 Farthest Pair in SpatialHadoop

Our SpatialHadoop algorithm works similar to our skylinelan
convex hull algorithms as we have four stepartitioning, filter-
ing, local farthest pair andglobal farthest pair In thepartitioning
step, we mainly use the SpatialHadoop partitioning schémihne
filtering step, we apply a specialized filtering rule for taethest
pair operation. The main idea is explained in Figure 6. For each
pair of cells,c; andc;, we compute theninimum(maximun dis-
tance between; andc; as the minimum (maximum) possible dis-
tance between any two poings € ¢; andp; € ¢; (Figure 6(a)).
Then, given two pairs of cell§; = (c1, c2) andCz = (c3, c4), we
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Figure 7: Closest Pair in SpatialHadoop

say thatC; dominate<’; if the minimum distance of; is greater
than or equal to the maximum distancelef In this case, the pair

() uniform  (b) Gaussian (C) Correlated(d) Anti- (€) Circular
correlated

Figure 8: Synthetic data distributions

with a point in another partition. Finally, as we mentioneihw
the farthest pair problem in Section 5.1, the brute force@ggh
would work but it requires too much computations for largedil

7.2 Closest Pair in SpatialHadoop

Our closest pair algorithm in SpatialHadoop is an adaptadfo
the traditional closest pair divide and conquer algoritt2%][ The
algorithm works in three steppartitioning, local closest pairand
global closest pair In the partitioning step, the input dataset is
loaded using SpatialHadoop loader which partitions the dao
cells as shown in Figure 7. As the size of each partition iy onl
64MB, the algorithm computes tHecal closest pairin each cell
using the traditional divide and conquer algorithm andetithe
two points forming the pair. In addition, the algorithm masfo
return all candidate points that can possibly produce aeclpair

C» can be pruned as it can never contain the farthest pair in the when coupled with points from neighboring cells. Looking-&-

dataset. This is depicted in Figure 6(b), where the farthastof
C1 must have a distance greater than the farthest pals.ofin this
case, the pair of cellés, c4) will never contribute to the final an-
swer, and hence will not be considered further for any prsings
Once all dominated cell pairs are pruned, the algorithm edegp
the local farthest pair for each selected pair of cells byifigdhe
local convex hull, then applying the rotating calipers algoritbm
the result [33]. It is important to note that it is feasibledéo use
the in-memory algorithms for local convex hull as the sizeacth
pair is bounded by twice the cell size. Finally, the algaritbom-
putes the global farthest pair by collecting all local faghpairs
and selecting the one with largest distance. For interestders,
the pseudocode of the farthest pair algorithms is in AppeAdd.

7. CLOSEST PAIR

The closest pair (Figure 1(e)) in any dataset can be fountyusi
a divide and conquer algorithm [25]. The idea is to sort alhf®
by x coordinates, and then based on the mediawoordinate, we
partition the points into two subset®; and P, of roughly equal
size and recursively compute the closest pair in each suBased
on the two distances of the two closest pairs found, the elgor
then continues to compute the closest pair of pgint& P, and

p2 € P such that the distance between them is better (smaller)

than the two already found. Finally, the algorithm retuims best
pair among the three pairs found. In this section, we intcedaur
closest pair algorithms for Hadoop and SpatialHadoop.

7.1 Closest Pair in Hadoop

Applying the divide and conquer algorithm described abave i

Hadoop as-is will be fairly expensive. First, it requiresragort for

the whole dataset which requires, by itself, two rounds opRlex
duce [29]. Furthermore, the merge step requires randonsscce
to the list of sorted points which is a well-known bottlendok
Hadoop file system [21]. On the other hand, using the default
Hadoop loader to partition the data and compute the locaksto
pair in each partition (as in the farthest pair algorithm)ynpao-
duce incorrect results. This is because data is partitioaedomly,
which means that a point in one partition might form a clopest
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ure 7, let us assume that the closest pair found; ihas the dis-
tanced;. We draw an internabuffer with sized; measured from
the boundaries aof; and return all points inside this buffer (shown
as solid points) as the candidate points while all other tscame
pruned. Notice that the two points forming the closest pairene-
turned earlier and are not affected by this pruning step.h&s/a in
this example, each cell may have a different buffer sizg based

on the closest pair found inside this cell. While the minimafm

all ’s would be a better and tighter value to compute all buffers,
it cannot be used because the MapReduce framework enfdtces a
map tasks to work in isolation which gives the framework more
flexibility in scheduling the work. Finally, in thglobal closest
pair step, all points returned from all cells are collected inreykg
machine which computes the global closest gaij by applying
the traditional divide and conquer algorithm to the set bpaints
returned by all machines.

For this algorithm to be correct, the cells must be non-
overlapping, which is true for the cells induced by Spatadblop
partitioning. This ensures that when a painis pruned, there are
no other points in the whole datagetthat are closer than the ones
in its same cell. Otherwise, if cells are overlapping, a ppinear
the overlap area might be actually very close to anothertppin
from another cell, thus none of them can be pruned. For reader
familiar with the MapReduce programming, the pseudocods is
Appendix A.5.

8. EXPERIMENTS

In this section we give an experimental study to show the effi-
ciency and scalability of CG_Hadoop. Both Hadoop and Spatia
Hadoop clusters are based on Apache Hadoop 1.2.0 and Java 1.6
All experiments were conducted on an internal universitgtr of
25 nodes. The machines are heterogeneous with HDD sizes rang
ing from 50GB to 200GB, memory ranging from 2GB to 8GB and
processor speeds ranging from 2.2GHz to 3GHz. Single machin
experiments are conducted on a more powerful machine wigh 2T
HDD, 16GB RAM and an eight core 3.4GHz processor.

Experiments were run on three datasets: (1) OSM1: A real
dataset extracted from OpenStreetMap [30] containing 164y
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gons from the map (e.g., lakes and parks) with a total siz€GE3
(2) OSM2: A real dataset also extracted from OpenStreet\idp a
contains 1.7 Billion points from all around the world (e.gtreet
intersections and points of interest) with a total size o6GB2
(3) SYNTH: A synthetic dataset of points generated randaman
area of 1Mk 1M using one of the distributionsiniform, Gaussian
correlated anti-correlated andcircular (See Figure 8).Uniform
andGaussiarrepresent the two most widely used distributions for
modeling many real life systemsCorrelatedand anti-correlated
represent the best and worst cases for skyline. Clicellar data is
used specifically for the farthest pair operation to gercired worst
case scenario where the convex hull size is very large. Tigeda
dataset generated is of size 128GB containing 3.8 billiantpo

We use total execution time as the main performance metric.
Sometimes, the results of single machine experiments aiteom
if the operation runs out of memory or the numbers are tocelarg
that would cause the difference between other algorithrdgt-
ish. Experimental results of the proposed operations ngnon the
real and synthetic datasets are given in Sections 8.1 amd€p2c-
tively.

8.1 Real data

This section gives performance results of the proposedaeper
tions running on the OSM real datasets. The results of thegpal
union algorithm are given separately as it runs on a datégety
gons while the other four operations run on a dataset of point

8.1.1 Polygon Union

Figure 10(a) gives the total processing time for the polygon
union operation while varying input size. Subsets of dédfer
sizes are extracted from the OSM1 dataset by retrievinggooly
from regions of different sizes to obtain datasets of siZ&MVB,
1GB, 4GB and 10GB. As shown in Figure 10(a), the single ma-
chine polygon union algorithm does not scale and quicklisfai
for large datasets with an out of memory exception. Although
the 4GB dataset fits in memory, the algorithm uses internt da
structures that require more memory causing the programathc
CG_Hadoop algorithms scale better as the workload is bligtd
in the cluster saving both computation and memory overhéad.
addition, CG_Hadoop is much better when it runs in Spatietdg
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ning on the OSM2 dataset. The results provide a clear evidenc
that CG_Hadoop outperforms traditional techniques by rerdé
magnitude. CG_Hadoop running on SpatialHadoop is repreden
by a solid bar in the figure but it might be hard to see as the pro-
cessing times are very small compared to the single mackdoe a
rithm. For both skyline and convex hull, CG_Hadoop achieses
average of 8X and 80X speedup when running on Hadoop and Spa-
tialHadoop, respectively. Farthest pair is carried out myputing

the convex hull first, then applying the rotating calipergtmé on

the hull which is the preferred method when the size of thereon

is small. This causes the running time of the farthest paircm-

vex hull to be very similar as the rotating calipers algarithsually
takes a fraction of a second for this small convex hull. Laterwe
show the results of farthest pair experiments when the conué

is too large for this method. Finally, for closest pair, otiig result

of CG_Hadoop on SpatialHadoop is shown as the single machine
algorithm failed to run due to an out of memory exception.

8.2 Synthetic Data

In this section we give more detailed results for each ofmrat
separately using generated data. Polygon union is notestudi-
ing synthetic data as it requires a more sophisticated gearefor
polygons which goes beyond the scope of this paper. We shew th
results of the four other operatiosgyling convex hull farthest
pair, andclosest pair We vary the generated data size from 4 GB
to 128GB and the generated data distribution as shown in&gu

8.2.1 Skyline

Figure 9 shows the performance of the skyline operationddn b
single machine algorithm and CG_Hadoop. The single madiine
gorithm reads the input points one by one and whenever the-phy
ical memory bulffer fills up, it runs the skyline algorithm teduce
used buffer size. This allows the algorithm to handle dath @ai-
bitrarily large sizes. Although, the single machine altiori was
able to finish all the experiments, some results are omittech f
the figures to adjust its scale. When CG_Hadoop is deployed in
standard Hadoop, it achieves up to an order of magnitudemperf
mance gain due to the parallelization of the computationr tve
machines in the cluster. The local skyline step is very &fficin
pruning most of the points leaving only a little work to be ddn
the global skyline step. CG_Hadoop can achieve up to tworsrde
of magnitude performance gain when deployed in Spatialdado
This performance boost is due to the filter step which prumes-p
tions that do not contribute to answer minimizing the totainber
of processed blocks.
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8.2.2 Convex Hull

Processing times of convex hull algorithms are shown in Fig-
ure 11. The convex hull algorithm reads the input points ope b
one and whenever the memory buffer is full, it runs an iteratf
the convex hull algorithm and keeps only the result whichpkee
memory usage limited. The convex hull algorithm in CG_Hatloo
described in Section 5.1 runs much faster than the singldimac
algorithm as the hull is computed through distributed pssogy in
the cluster. CG_Hadoop is even more efficient in Spatialldpdo
as the filter step allows it to minimize the total processiggéarly
pruning of partitions that do not contribute to answer. Altgh not
shown here for clarity of the figure, CG_Hadoop achieves 260X
speedup for the 128GB dataset when deployed in Spatialkadoo
compared to the traditional system.

8.2.3 Farthest Pair

There are two techniques to compute the farthest pair in
CG_Hadoop. The first one is to compute the convex hull folbwe
by the rotating calipers algorithm [33] which is only applite
when the size of the convex hull is limited. We use this teghaei
for single machine experiments. The second technique ittt
ified brute force approach described in Section 6.2. Fig@(a)l
compares the performance of the two approaches for diffénen
put sizes. We use a generatgctular dataset like the one in Fig-
ure 8(e) to get a very large convex hull. As shown, the firgttec
nique is more efficient whenever it is applicable as it resgiia
single scan around the convex hull. However, it fails whendata
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9. RELATED WORK

The use of MapReduce in the computational geometry field was
only discussed from a theoretical perspective [15] to ssiggien-
ulating Bulk-Synchronous Parallel (BSP) in MapReduce ase u
it to solve some computational geometry problems such agegon
hull. However, no actual implementations were providedianwas
not shown how to implement other algorithms that do not feliioe
BSP model. To the best of our knowledge, our work in CG_Hadoop
is the first to provide detailed MapReduce implementatidnsao
ious computational geometry problems. In the meantimegettse
increasing recent interest in taking advantage of Hadosppport
spatial operations. Existing approaches for supportiragizipdata
in MapReduce can be classified into two broad categorie Sdl}
ing a specific spatial operation, and (2) Providing a franr&vior
spatial data.

Specific spatial operations Existing work in this category has
mainly focused on implementing specific spatial operatiass
MapReduce jobs in Hadoop. Examples of this work has focused
on R-tree building [8], range queries over spatial point8],[3
range queries over trajectory data [24]nearest-neighbork(NN)
queries [2, 38], all nearest-neighbor (ANN) queries [3@vearse
nearest-neighbor (RNN) queries [2], spatial join [38], @xaNN

Join [23] and approximateNN Join [37].

Unified framework for spatial operations. There exist four recent
systems that are built for various spatial operations: (ajlédp-

size exceeds main memory capacity as the convex hull becomesg|s [1] is a spatial data warehousing system focusing ongs®c

extremely large. On the other hand, the modified brute fopze a
proach in CG_Hadoop is less efficient since it requires afldi
tance computations between points to select the pair wikirman
distance. However, it has a scalability advantage as itires|@a
very small memory footprint compared to the single machige-a
rithm. The recommendation is that the modified brute forarikh
be used only when the rotating calipers method is not aggéca

8.2.4 Closest Pair

Results of the closest pair experiments are shown in Fig(ts) 1
for different input sizes. The traditional single machithgoaithm
cannot scale to large files since it has to load the whole eabas
memory first. In the show experiments, the traditional athor

ing medical data. (2) Parallel-Secondo [22] is a paralleitisp
DBMS which uses Hadoop as a distributed task schedulerewhil
all storage and spatial query processing are done by spaRislS
instances running on cluster nodes. (3)D-HBase [27] extends
HBase to support multidimensional indexes which allowsefii
cient retrieval of points using range ahtIN queries. (4) Spatial-
Hadoop [12] extends Hadoop with grid file and R-tree indexabs a
provides new MapReduce components that allow using thex@zde
in spatial MapReduce programs.

Our work in this paper, CG_Hadoop, lies in between the above
two categories. First, it does not focus on only one specifac s
tial operation. Instead, it covers five different and funeatal
computational geometry spatial operations. Second, it

fails when the input size reaches 16GB. CG_Hadoop achievesprovide a new system. Instead, it provides efficient impletae

much better performance for two reasons. First, the clgsaist
computation is parallelized on cluster machines which dpes

the whole algorithm. Second, each machine prunes manyspoint
that no longer need to be considered for closest pair. As show
CG_Hadoop is much more scalable and it does not suffer from

tions of various computational geometry algorithms witiSipa-
tialHadoop, which achieves high performance using theigeal
spatial indexes. Overall, CG_Hadoop forms a nucleus of acom
prehensive MapReduce library of computational geometgrap
tions. Its open-source nature will act as a research vefuckgher

memory problems because each machine deals with only one par researchers to build more computational geometry algostthat

tition at a time limiting the required memory usage to a blsize.
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take advantage of the MapReduce paradigm.



10. CONCLUSION

This paper has introduced CG_Hadoop; a suite of scalable and 1:
. function MAP(P: Polygon) > Identity map function

efficient MapReduce algorithms for various fundamental pota-
tional geometry operations, namefyolygon union skyline con-

vex hull farthest pair and closest pair For each operation,
CG_Hadoop has two versions; one for the Apache Hadoop sys-
tem and one for the SpatialHadoop system. All algorithms in
CG_Hadoop deploys a form of divide-and-conquer method that
leverages the distributed parallel environment in bothdd@dand
SpatialHadoop, and hence achieves much better perforntaace
their corresponding traditional algorithms. In the meaetj Spa-
tialHadoop algorithms significantly outperform Hadoopasithms

as they take advantage of the spatial indexing and comp®nent
within SpatialHadoop. Overall, CG_Hadoop forms a nuclelis o
a comprehensive MapReduce library of computational gegmet
operations. Extensive experimental results on a clust@saha-

Algorithm 1 Polygon union operation in Hadoop/SpatialHadoop

I

4.
5:
6:
7:

8:
9:.

Load the input file using Hadoop/SpatialHadoop file loader

outpuk= (1, p)
end function
function ComBINE, REDUCKE(L, P : Set of polygons)
Compute the union of the set of polygofs
for Each polygorp in the uniondo
output= (1, p)
end for

10: end function

[21]

[22]

chines of datasets up to 128GB show that CG_Hadoop achieves[zg]

up to 29x and 260x better performance than traditional &lyos
when using Hadoop and SpatialHadoop systems, respectively
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APPENDIX

A.

MAPREDUCE PSEUDOCODE

This appendix gives the pseudocode for CG_Hadoop algasithritten
in a MapReduce programming paradigm. For more informatlmoutithe
MapReduce programming paradigm, please refer to [11].

A.1 Polygon Union
Algorithm 1 gives the pseudocode of the polygon union op@nafor

both Hadoop and SpatialHadoop. Line 1 loads the input fitetime cluster
using either Hadoop or SpatialHadoop loader. The map fom¢lines 2-4)
emits each polygon with a constant key. This ensures thabtjons are
sent to a single reducer that computes the union of all of th&he local
union step is implemented as a combine function (lines 5:B)ch com-
putes the union of all polygons locally in each machine. Tdreesfunction
is used as a reduce function that computes the union of algpok in a



Algorithm 2 Skyline in Hadoop/SpatialHadoop

Algorithm 4 Farthest pair in SpatialHadoop

1: Load the input file using Hadoop/SpatialHadoop file loader
2: if File is spatially indexedhen
function FILTER(C': Set of cells)
4: Initialize the setS of selected cells t4 }
5 for each celkc in C do
6 if ¢ is not dominated by any cell i then
7 Addcto S
8: Remove all cellsS dominated by
9: end if
10 end for
11 end function
12: end if
13: function MaP(p: Point)
14:  output= (1,p)
15: end function
16: function ComBINE, REDUCE(1, P: Set of points)
17:  Apply skyline to P to find non-dominated points

> Identity map function

18:  for each non-dominated poiptdo
19: output= (1, p)
20:  endfor

21: end function

Algorithm 3 Convex hull in Hadoop/SpatialHadoop

1: Load the input file using Hadoop/SpatialHadoop file loader
2: if File is spatially indexethen
function FILTER(C": Set of cells)

4 Initialize the setS of selected cells t4 }

5 for each of the four skylinedo

6: Apply the skyline filter function to select a subset®@f
7. Add all selected cells t&
8
9
1

end for
end function
0: end if
11: function MAP(p: Point)
12:  output= (1,p)
13: end function
14: function ComBINE, REDUCE(1, P: Set of points)

> Identity map function

15: Apply convex hull toP to find points on the convex hull
16: for each selected poinptdo

17: output= (1, p)

18:  endfor

19: end function

single reducer. Using one function as both a combine ancceeflunctions
is typical in most MapReduce programs that employ a comhinetfon.

A.2 Skyline

Algorithm 2 gives the pseudocode for the skyline MapRedugershm
for both Hadoop and SpatialHadoop. Similar to the unionrétigm, line 1
loads the data into the cluster using either Hadoop or Spatitop loader.
The filter function in lines 3-11 is applied only for Spatiaébop where
it iterates over each cell of the partitioned file and add® ithe list of
selected (non-dominated) cells in lines 7 if it is not dorteaiaby any other
selected cell. When a cell is added (line 8), all previougleated cells
that are dominated by the new added eelire removed from the set of
selected cells because they are no longer non-dominatedmap function
in lines 13-15 emits each point with a constant key to ensheg are all
reduced by one reducer. The combine function in lines 16e2ipuites the
local skyline and outputs each selected point. The saméifumic used as
a reduce function to compute the global skyline.

A.3 Convex Hull

Algorithm 3 for computing the convex hull in Hadoop and Salati
Hadoop is very similar to the skyline algorithm. The filtemétion in
lines 3-9 applies the skyline filter four times and returns timion of all
cells selected. The combine/reduce function in lines 14d@putes the
convex hull of a set of points and returns all points founde@h the hull.

A.4  Farthest Pair

Algorithm 4 gives the pseudocode of the farthest pair algoriin Spa-
tialHadoop. The file has to be loaded using the spatial filddoan line 1.
Then, the filter function in lines 2-15 scans all cell pairsl aeturns only
non-dominated pairs. Notice that unlike previous algonghwhere the fil-
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1: Load the input file using SpatialHadoop file loader

2: function FILTER(C'1 , C2: Two sets of cells)

3 Initialize the setS of selected cell pairs t§}

4: for each pair of celld; = (c1, c2) in C1 x Cs do

5: dominatedk— false

6: for each pair of cellds = (c3, c4) in S do

7: Removeks from S if the minimum distance ok; > the maximum
distance ofko

8: if the minimum distance df> > the maximum distance df; then

9: Set dominated to true and break the inner loop

10: end if

11: end for
12: Add k1 to S if not dominated
13: end for

14:  retun S

15: end function

16: function MAP(P; , Py: Two sets of points)

17 P« P UP,

18: Compute the convex hull @P using Andrew’s monotone chain algorithm
19: Compute the farthest pair of points , p2 using rotating calipers method
20: output<= (1, (p1,p2))

21: end function

22: function REDUCK(1, P: Set of point pairs)

23:  ScanP and return the pair with the largest distance

24: end function

Algorithm 5 Closest pair algorithm in SpatialHadoop

1: Load the input file using SpatialHadoop file loader
. function MAP(P: Set of points)
Compute the closest pajp, ¢) of P using the divide and conquer algorithm
output<= (1, p)
output<= (1, q)
Let é be the distance betwegnandq
Draw a buffer with size) inside the MBR of P and return all points in the
buffer
. end function
. function REDUCKE(1, P : Set of points)
Compute and return the closest pairg of P using the divide and conquer
algorithm
. end function
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ter function takes a set of cells, the filter function in thigogithm takes a
pair of sets. The reason is that this operation is designedbisary oper-
ation which operates on two files. In this particular case,ttto files are
just the same file similar to a self join in DBMS. The filter ftion scans
all possible pair of cells in the Cartesian product(df and C> and tests
the dominance rule devised in Section 6.2 with all previpsslected pairs
in S. If a previously selected (non-dominated) pair is found ¢odomi-
nated, it is removed fronS. If the currently tested pair is found to be not
dominated by any previously selected pair, it is added teét®f selected
(non-dominated) pairs. At the end, it returns all selectaidsp

The map function in lines 16-21 is called once for each setepair of
cells. Again, since this is a binary operation, the sigretfrthe map func-
tion is a little bit different than previous examples. Itéakwo sets of points
corresponding to all points in the two cells in a selected @adl computes
the farthest pair of points in the two sets by combining thegether, com-
puting the convex hull and finally applying the rotating palis method to
get the farthest pair of points. This pair is sent to the oufsLa value with
a constant key which ensures that all selected farthess gaito a single
reducer. Finally, the reduce function in lines 22-24 schedist of all pairs
returned by the map phase to choose the pair with the larggtande.

A.5 Closest Pair

Algorithm 5 gives the pseudocode of the closest pair algariin Spa-
tialHadoop. Inline 1, the file is initially loaded using Sigéiladoop loader.
No filtering is required for this operation because all chise to be pro-
cessed. The map function takes a Betf points in one cell and computes
their closest pair using a traditional divide and conqugoathm. The two
points forming the closest pair are returned in lines 4 anth&n, all points
with distance less thafi from the boundaries are also returned by the map
function. All these points from all mappers are combinedrie ceducer to
compute their closest pair using a traditional in-memogpethm.



