
CG_Hadoop: Computational Geometry in MapReduce

Ahmed Eldawy #∗ Yuan Li # Mohamed F. Mokbel#$∗ Ravi Janardan#

#Department of Computer Science and Engineering, University of Minnesota, Twin Cities
$KACST GIS Technology Innovation Center, Umm Al-Qura University, Makkah, Saudi Arabia

{eldawy,yuan,mokbel,janardan}@cs.umn.edu

ABSTRACT
Hadoop, employing the MapReduce programming paradigm, has
been widely accepted as the standard framework for analyz-
ing big data in distributed environments. Unfortunately, this
rich framework was not truly exploited towards processing large-
scale computational geometry operations. This paper introduces
CG_Hadoop; a suite of scalable and efficient MapReduce algo-
rithms for various fundamental computational geometry problems,
namely,polygon union, skyline, convex hull, farthest pair, andclos-
est pair, which present a set of key components for other geo-
metric algorithms. For each computational geometry operation,
CG_Hadoop has two versions, one for the Apache Hadoop sys-
tem and one for the SpatialHadoop system; a Hadoop-based sys-
tem that is more suited for spatial operations. These proposed al-
gorithms form a nucleus of a comprehensive MapReduce library
of computational geometry operations. Extensive experimental re-
sults on a cluster of 25 machines of datasets up to 128GB show
that CG_Hadoop achieves up to 29x and 260x better performance
than traditional algorithms when using Hadoop and SpatialHadoop
systems, respectively.

Categories and Subject Descriptors
I.3.5 [Computational Geometry and Object Modeling]: Ge-
ometric algorithms; H.2.8 [Database Applications]: Spatial
databases and GIS

General Terms
Algorithms

Keywords
Hadoop, MapReduce, Geometric Algorithms

∗The work of these authors is supported in part by the NationalScience
Foundation, USA, under Grants IIS-0952977 and IIS-1218168.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGSPATIAL’13, November 05 - 08 2013, Orlando, FL, USA
Copyright 2013 ACM 978-1-4503-2521-9/13/11...$15.00.
http://dx.doi.org/10.1145/2525314.2525349

1. INTRODUCTION
Hadoop [17] is a framework designed to efficiently process huge

amounts of data in a distributed fashion. It employs the MapReduce
programming paradigm [11], which abstracts a parallel program
into two functions,map and reduce. The map function maps a
single input record to a set of intermediate key value pairs〈k, v〉,
while thereducefunction takes all values associated with the same
key and produce the final answer. The simplicity and flexibility of
the MapReduce paradigm allow Hadoop to be employed in several
large-scale applications including machine learning [13], tera-byte
sorting [29], and graph processing [14].

In the meantime, there is a recent tremendous increase in devices
and applications that generate enormous rates of spatial data. Ex-
amples of such devices include smart phones, space telescopes [6],
and medical devices [28,35]. Such amount of Big Spatial Datacalls
for the need to take advantage of the MapReduce programming
paradigm [11] to solve various spatial operations. Among the most
important spatial operations is the family of Computational Geom-
etry algorithms that are concerned with representing and working
with geometric entities in the spatial domain. Examples of such
operations include convex hull, skyline, union, and farthest/closest
pairs. Although there exist well established computational geome-
try algorithms for such problems [5, 33], unfortunately, such algo-
rithms do not scale well to handle modern spatial datasets which
can contain, for instance, billions of points. For example,comput-
ing a convex hull for a data set of 4 billion points using a traditional
algorithm may take up to three hours, while computing the union
of a data set of 5M polygons takes around one hour and fails with
a memory exception for larger data sets.

In this paper, we introduce CG_Hadoop; a suite of scalable and
efficient MapReduce algorithms for various fundamental compu-
tational geometry problems, namely,polygon union, skyline, con-
vex hull, farthest pair, andclosest pair, which present a set of key
components for other geometric algorithms [5, 33]. CG_Hadoop
achieves order(s) of magnitude better performance than traditional
computational geometry algorithms when dealing with large-scale
spatial data. For each computational geometry operation, we in-
troduce two versions of CG_Hadoop. The first version is deployed
on the Apache Hadoop system [17]; an open-source MapReduce
platform, which is widely used in various MapReduce applications,
e.g., see [9,13,14,19,20,29]. The second version of CG_Hadoop is
deployed on SpatialHadoop [12]; a Hadoop-based system equipped
with spatial indexes and is more suited for spatial operations.

The main idea behind all algorithms in CG_Hadoop is to take
advantage of thedivide and conquernature of many computational
geometry algorithms. The divide and conquer property lendsit-
self to the MapReduce environment, where the bulk of work canbe
parallelized to work on multiple nodes in a computational machine

304

cluster. Yet, CG_Hadoop has to adapt traditional computational
algorithms to work better in the MapReduce environment. Forex-
ample, unlike traditional algorithms which usually dividethe in-
put in half and do multiple rounds, CG_Hadoop divides the input
into smaller chunks to ensure that the answer is computed in one
MapReduce round, which is preferable for both Hadoop and Spa-
tialHadoop. In addition, we use the distributed spatial indexes pro-
vided in SpatialHadoop, whenever possible, to speed up the com-
putations by early pruning input chunks that do not contribute to
the answer of the computational geometry operation of interest.

CG_Hadoop, source code available as part of SpatialHadoop
at http://spatialhadoop.cs.umn.edu/, forms a nucleus of a compre-
hensive MapReduce library of computational geometry operations.
Its open-source nature will act as a research vehicle for other re-
searchers to build more computational geometry algorithmsthat
take advantage of the MapReduce programming paradigm. Exten-
sive experiments on a cluster of 25 machines using both real and
generated datasets of sizes up to 128GB show that CG_Hadoop
achieves up to 29x and 260x better performance than traditional al-
gorithms when using Hadoop and SpatialHadoop systems, respec-
tively.

The rest of this paper is organized as follows. Section 2 gives a
brief necessary background. MapReduce algorithms for the poly-
gon union, skyline, convex hull, farthest pair, and closestpair op-
erations are given in Sections 3 to 7. Section 8 gives an experi-
mental evaluation. Related work is discussed in Section 9, while
Section 10 concludes the paper.

2. BACKGROUND
This section gives a background about Hadoop [17] and Spatial-

Hadoop systems as the two platforms used in CG_Hadoop as well
as the set of computational geometry operations in CG_Hadoop.

2.1 Hadoop
Hadoop [17] is an open-source framework for data processing

on large clusters. A Hadoop cluster consists of one master node
and several slave nodes. The master node stores meta information
about files (e.g., name and access rights) while slave nodes store
the actual data in files (e.g., records). A file is usually uploaded to
the Hadoop Distributed File System (HDFS) before it is processed
where the file is split into chunks of 64MB (called blocks). The
master node keeps track of how the file is split and where each
block is stored, while slave nodes store the data blocks. In analogy
with a regular file system, the master node stores the file allocation
table or INodes, while slave nodes store data in files.

A MapReduce program [11] configures a MapReduce job and
submits it to the master node. A MapReduce job contains a set of
configuration parameters such as themap function and the input
file. The master node breaks this job into severalmap tasksand
reduce tasksand run each one on a slave node. It also breaks the
input file into splits and assigns each split to a slave node tobe
processed as a map task. The map task parses its assigned split
using the configuredrecord readerand produces a set of key-value
pairs〈k1, v1〉 which are sent to themap function to produce a set
of intermediate pairs〈k2, v2〉. Intermediate pairs are grouped by
k2 and thereducefunction collects all intermediate records with
the same key and processes them to generate a set of final records
〈k3, v3〉 which are stored as the job output in HDFS files.

MapReduce and Hadoop have been widely adopted by major in-
dustry, e.g., Google [11], Yahoo! [9] Dryad in Microsoft [18], Cas-
sandra in Facebook [19], and Twitter [20]. It has also been widely
employed in several large-scale applications including machine
learning [13], tera-byte sorting [29], and graph processing [14].

2.2 SpatialHadoop
SpatialHadoop [12] is a comprehensive extension to Hadoop that

enables efficient processing of spatial operations. Mainly, it pro-
vides a two-layered spatial index in the Hadoop storage layer with
implementations of Grid file [26] and R-tree [16] indexing. It also
enriches the MapReduce layer with new components that allowus-
ing the spatial index structures within MapReduce programs. The
built-in indexes in SpatialHadoop help in building efficient algo-
rithms for several spatial operations.

The spatial index in SpatialHadoop is organized as oneglobal
indexand multiplelocal indexes. The global index partitions data
across cluster nodes while the local indexes organize data inside
each node. The new added components in the MapReduce layer
utilize both the global and local indexes to prune file partitions
and records, respectively, that do not contribute to the answer. The
pruning criteria is determined through a user definedfilter function
which is provided as part of the MapReduce program.

2.3 Computational Geometry Operations
As indicated earlier, CG_Hadoop forms a nucleus of a com-

prehensive MapReduce library of computational geometry oper-
ations. Currently, CG_Hadoop includes five fundamental oper-
ations, namely,Union, Skyline, Convex Hull, Farthest pair, and
Closest Pair. Below, we give a brief definition of each operation.
Union. The union of a setS of polygons is the set of all points that
lie in at least one of the polygons inS, where only the perimeter
of all points is kept while inner segments are removed. Figure 1(a)
gives a sample input to the polygon union operation as a set ofZIP
code areas, while Figure 1(b) gives the union result.
Skyline. Consider the set of pointsP in Figure 1(c). Pointpi
∈ P dominatespoint pj ∈ P if each of the coordinates ofpi is
greater than or equal to the corresponding coordinate ofpj , with
strict inequality in at least one dimension. Theskylineof P consists
of those points ofP that are not dominated by any other point of
P (e.g., Figure 1(d)). In the computational geometry literature, the
skyline points are usually called maximal points [33].
Convex Hull. The convex hull of a set of pointsP is the small-
est convex polygon that contains all points inP , as given in Fig-
ure 1(e). The output of the convex hull operation is the points form-
ing the convex hull ordered in a clockwise direction.
Farthest Pair. Given a set of pointsP , the farthest pair is the pair
of points that have the largest Euclidean distance between them.
As shown in Figure 1(e), the two points contributing to the farthest
pair have to lie on the convex hull.
Closest Pair. Given a set of pointsP , the closest pair is the pair
of points that have the smallest Euclidean distance betweenthem
(Figure 1(e)).

3. UNION
A traditional algorithm for the polygon union operation [33]

computes the union of two polygons by computing all edges inter-
sections, removing all inner segments, and leaving only segments
on the perimeter. For more than two polygons, we start with one
polygon, add other polygons to it one by one and compute the union
with each polygon added. In PostGIS [32], this operation canbe
carried out using the following SQL query where the columngeom
stores polygon information of each ZIP code.
SELECT ST_Union(zip_codes.geom)
FROM zip_codes;

In this section, we introduce two polygon union algorithms for
Hadoop and SpatialHadoop. We use input dataset in Figure 1(a) as
a clarification example. For ease of illustration and without loss of
generality, the example has non-overlapped polygons.

305

(a) Input Polygons (b) Union (c) Input Points (d) Skyline
Convex Hull

Closest Pair

Farthest Pair

(e) Others

Figure 1: Computational Geometry Operations covered by CG_Hadoop

Node 1 Node 2

Node 3 Node 4

Figure 2: Polygon union in Hadoop

3.1 Union in Hadoop
The main idea of our Hadoop polygon union algorithm is to

allow each machine to accumulate a subset of the polygons, and
then let a single machine combine the results from all machines
and compute the final answer. Our algorithm works in three steps:
partitioning, local union, andglobal union. Thepartitioning step
distributes the input polygons into smaller subsets each handled by
one machine. This step is performed by the Hadoopload file
command which splits the file into chunks of 64MB storing each
one on a slave node. In thelocal unionstep, each machine com-
putes the union of its own chunk using a traditional in-memory
polygon union algorithm. As each chunk is at most of size 64MB,
the in-memory algorithm works fine regardless of the size of the
input file. This step is implemented in Hadoop as acombinefunc-
tion, which runs locally in each machine. After performing the
local union, each machine ends up with a set of polygons that repre-
sent the union of all polygons assigned to this machine. Theglobal
union step is implemented in Hadoop as areducefunction, which
runs on a single machine to compute the final answer. The reduce
function takes the output of all local unions, combines theminto
one list, and computes their union using the traditional in-memory
algorithm. Each machine will end up with only few polygons, mak-
ing it possible to do the union using the in-memory algorithm.

By taking advantage of a set of parallel machines, rather than
performing all the work in a single machine, our proposed algo-
rithm achieves orders of magnitude better performance thanthat of
traditional algorithms. Although there is an overhead in partition-
ing the data to multiple machines, and then collecting the answer
from each machine, such overhead is offset by the cost savingover
parallel machines, which can be seen in large-scale spatialdata sets.
For interested readers, who are familiar with MapReduce program-
ming paradigm, the pseudocode of our Hadoop polygon union al-
gorithm is given in Appendix A.1.

Node 1 Node 2

Node 4Node 3

Figure 3: Polygon union in SpatialHadoop

Figure 2 gives the partitioning and local union steps of the input
dataset of Figure 1(a) over four cluster computing nodes, where
each polygon is assigned to one node. The decision of which node
belongs to which partition is completely taken by the Hadoopload
file component, where it basically assigns polygons to nodesran-
domly. As a result, and as can be seen in the figure, some polygons
assigned to one node might remain completely disjoint aftercom-
puting the union. In this case, all these polygons are written to the
output. Then, all nodes send their output to a single machinewhich
computes the final answer as given in Figure 1(b)

3.2 Union in SpatialHadoop
Our polygon union algorithm in SpatialHadoop has the same

three steps as our algorithm in Hadoop. The only difference is that
the partitioning step in SpatialHadoop is done in a spatially-aware
manner, as given in Figure 3, where adjacent polygons are assigned
to the same machine. The main reason here is that we utilize the
underlying index structure in SpatialHadoop to be able to distribute
polygons over nodes. In particular, we use the R-tree indexing in
SpatialHadoop, where the size of each R-tree node is 64MB, to
dump all the entries in each R-tree node to one node cluster. Since,
by definition, an R-tree node provides a cluster of adjacent poly-
gons, especially, that all R-trees in SpatialHadoop are bulk loaded,
then we guarantee that all polygons in the same node are adjacent.

Although the local and global union steps remain the same, they
become much lighter. The local union step mostly produces one
output polygon, rather than a set of polygons as in Hadoop, there-
fore, the global union step processes fewer polygons. In ourex-
ample, the number of polygons resulting from the local unionstep
drops from 28 polygons in Hadoop to only four polygons in Spa-
tialHadoop making the whole algorithm significantly faster. The
pseudocode for the polygon union algorithm in SpatialHadoop is
exactly the same as that of Hadoop (Appendix A.1).

306

4. SKYLINE
A traditional in-memory two-dimensional skyline algorithm [33]

uses a divide and conquer approach where all points are initially
sorted by theirx coordinates and divided into two subsets of equal
size separated by a vertical line. Then, the skyline of each half is
computed recursively and the two skylines are merged to compute
the final skyline. To merge two skylines, the points of the left sky-
line are scanned in a non-decreasingx order, which implies a non-
increasingy order, and each one is compared to the left most point
of the right skyline. Once a point on the left skyline is dominated,
it is removed along with all subsequent points on the left skyline
and the two lists of remaining points from both skylines are con-
catenated together. The skyline operator is not natively supported
in database management systems. Yet, it is of considerable interest
in the database literature, where the focus is mainly on disk-based
algorithms (e.g., see [7,31]) with anon-standardSQL query.

SELECT * FROM points
SKYLINE OF d1 MAX, d2 MAX;

In this section, we introduce our two skyline algorithms for
Hadoop and SpatialHadoop, while using input dataset in Fig-
ure 1(c) as an illustrative example.

4.1 Skyline in Hadoop
Our Hadoop skyline algorithm is a variation of the traditional di-

vide and conquer skyline algorithm [33], where we divide theinput
into multiple (more than two) partitions, such that each partition
can be handled by one machine. This way, the input needs to be di-
vided across machines only once ensuring that the answer is found
in one MapReduce iteration. Similar to our Hadoop polygon union
algorithm, our Hadoop skyline algorithm works in three steps,par-
titioning, local skyline, andglobal skyline. The partitioning step
divides the input set of points into smaller chunks of 64MB each
and distributes them across the machines. In thelocal skylinestep,
each machine computes the skyline of each partition assigned to it,
using the traditional algorithm, and outputs only the non-dominated
points. Finally, in theglobal skylinestep, a single machine collects
all points of local skylines, combines them in one set, and computes
the skyline of all of them. Notice that skylines cannot be merged
using the technique used in the in-memory algorithm as the local
skylines are not separated by a vertical line, and may actually over-
lap. This is a result of Hadoop partitioning which distributes the
points randomly without taking their spatial locations into account.
The global skyline step computes the final answer by combining
all the points from local skylines into one set, and applyingthe
traditional skyline algorithm. Readers familiar with MapReduce
programming can refer to Appendix A.2 for pseudocode.

This algorithm significantly speeds up the skyline computation
compared to the traditional algorithm by allowing multiplema-
chines to run independently and in parallel to reduce the input size
significantly. For a uniformly distributed dataset of sizen points, it
is expected that the number of points on the skyline isO(log n) [4].
In practice, for a partition of size 64MB with around 700K points,
the skyline only contains a few tens of points for both real and uni-
formly generated datasets. Given this small size, it becomes feasi-
ble to collect all those points in one single machine that computes
the final answer.

4.2 Skyline in SpatialHadoop
Our proposed skyline algorithm in SpatialHadoop is very similar

to the Hadoop algorithm described earlier, with two main changes.
First, in thepartitioning phase, we use the SpatialHadoop parti-
tioner when the file is loaded to the cluster. This ensures that the

c1

c2

c3

c4

c5

c6

Figure 4: Skyline in SpatialHadoop

data is partitioned according to an R-tree instead of randomparti-
tioning, which means that local skylines from each machine are non
overlapping. Second, we apply an extrafilter step right before the
local skyline step. Thefilter step, runs on a master node, takes as
input the minimal bounding rectangles (MBRs) of all partitioned
R-tree index cells, and prunes those cells that have no chance in
contributing any point to the final skyline result.

The main idea of the newfilter step is that a cellci dominates
another cellcj if there is at least one point inci that dominates all
points incj , in which casecj is pruned. For example, in Figure 4,
cell c1 is dominated byc5 because the bottom-left corner ofc5 (i.e.,
worst point) dominates the top-right corner ofc1 (i.e., best point).
The transitivity of the skyline dominance relation impliesthat any
point inc5 dominates all points inc1. Similarly,c4 is dominated by
c6 because the top-left corner ofc6 dominates the top-right corner
of c4. This means that any point along the top edge ofc6 dominates
the top-left corner ofc6, and hence, dominates all points inc4. As
the boundaries of a cell are minimal (because of R-tree partition-
ing), there should be at least one point ofP on each edge. We can
similarly show that cellc3 is also dominated byc2. So, our pruning
technique in thefilter step is done through a nested loop that tests
every pair of cellsci and cj together. We compare the top-right
corner ofcj against three corners ofci (bottom-left, bottom-right,
and top-left). If any of these corners dominates the top-right corner
of cj , we prunecj out from all our further computations, and do not
assign it to any node. Hence, we will not compute its local skyline,
nor consider it in the global skyline step.

It is important to note that applying this filtering step in Hadoop
will not have much effect, as the partitioning scheme used in
Hadoop will not help in having such separated MBRs for differ-
ent cells. The SpatialHadoop skyline algorithm has much better
performance than its corresponding Hadoop algorithm as thefilter-
ing step prunes out many cells that do not need to be processed.
Interested readers can refer to Appendix A.2 for the pseudocode of
the filter step.

5. CONVEX HULL
The convex hull shown in Figure 1(e) can be computed as

the union of two chains using Andrew’s Monotone Chain algo-
rithm [3]. First, it sorts all points by theirx coordinates and iden-
tifies the left-most and right-most points. Then, the upper chain
of the convex hull is computed by examining every three consec-
utive pointsp, q, r, in turn, from left to right. If the three points
make a non-clockwise turn, then the middle pointq is skipped as it
cannot be part of the upper chain and the algorithm then considers
the pointsp, r, s, wheres is the successor ofr; otherwise the al-
gorithm continues by examining the next three consecutive points
q, r, s. Once the rightmost point is reached, the algorithm con-

307

(a) Input (b) Skyline max-max (c) Skyline max-min

(d) Skyline min-min (e) Skyline min-max (f) Final answer

Figure 5: Convex hull in SpatialHadoop

tinues by computing the lower chain in a similar way by checking
all points ofP from right to left and doing the same check. Using
PostGIS [32], the convex hull can be computed by a single SQL
query using the functionST_ConvexHull. Since this function
takes one record as argument, points have to be first combinedin
one line string using the functionST_Makeline.

SELECT ST_ConvexHull(ST_Makeline(points.coord))
FROM points;

In this section, we introduce two convex hull algorithms for
Hadoop and SpatialHadoop, while using input dataset in Fig-
ure 1(c) as an illustrative example.

5.1 Convex Hull in Hadoop
Our Hadoop convex hull algorithm is very similar to our Hadoop

skyline algorithm, where we start by apartitioning phase to dis-
tribute the input data into small chunks such that each chunkfits
in memory. Then, thelocal convex hullof each subset is calcu-
lated using the traditional in-memory algorithm [3] and only those
points forming the convex hull are retained. The points fromall
convex hulls in all machines are combined in a single machinethat
computes theglobal convex hull, which forms the final answer, us-
ing the traditional in-memory convex hull algorithm. Similar to
skyline, the number of points on the convex hull is expected to be
O(log n) [10] for uniform data, making this algorithm very effi-
cient in pruning most of the points when computing the local hull
and allowing the global hull to be computed in one node.

5.2 Convex Hull in SpatialHadoop
The convex hull algorithm in Hadoop processes more file parti-

tions than necessary. Intuitively, the parts of the file thatare towards
the center do not contribute to the answer. In SpatialHadoop, we
improve the convex hull algorithm by early pruning those partitions
that do not contribute to answer. The key idea is that any point on
the convex hull must be part of at least one of the four skylines
of the dataset (max-max, min-max, max-min, and min-min) [33].
A max/min-max/min skyline considers that maximum/minimum
points are preferred inx-y dimensions. This property allows us to
reuse the skylinefiltering step in Section 4.2. As given in Figure 5,
we apply the skyline algorithm four times to select the partitions
needed for the four skylines and take the union of all these parti-
tions as the ones to process. Clearly, a partition that does not con-
tribute to any of the four skylines will never contribute to the final

Minimum

distance

Maximum

distance

c1

c2

(a) Min and Max distances

Minimum

distance of

Maximum

distance of

c1

c2

c3

c4

C1

C2

(b) Pruning rule

Figure 6: Farthest pair algorithm in SpatialHadoop

convex hull. Once the partitions to be processed are selected, the
algorithm works similar to the Hadoop algorithm in Section 5.1 by
computing the local convex hull of each partition and then combin-
ing the local hulls in one machine, which computes the globalcon-
vex hull. The gain in the SpatialHadoop algorithm comes fromthe
spatially-aware partitioning scheme that allows for the pruning in
thefiltering step, and hence the cost saving in both local and global
convex hull computations. For interested readers, the pseudocode
of the SpatialHadoop convex hull algorithm is in Appendix A.3.

6. FARTHEST PAIR
A nice property of the farthest pair (shown in Figure 1(e)) isthat

the two points forming the pair must lie on the convex hull of all
points [34]. This property is used to speed up the processingof the
farthest pair operation by first computing the convex hull, then find-
ing the farthest pair of points by scanning around the convexhull
using the rotating calipers method [33]. In this section, weintro-
duce our farthest pair algorithms for Hadoop and SpatialHadoop.

6.1 Farthest Pair in Hadoop
A Hadoop algorithm for the rotating calipers method [33] would

complete the convex hull first as discussed in Section 6.1. Then, a
single-machine will need to scan all the points in the convexhull,
which may be a bottleneck based on the number of points in the
convex hull. In that case, it may be better to develop a Hadoopal-
gorithm based on parallelizing the brute-force approach offarthest
pair algorithm, which calculates the pairwise distances between ev-
ery possible pair of points and select the maximum. The bruteforce
approach will be expensive for very large input files, yet it may be
used if it is not feasible for one machine to calculate the farthest
pair from the points in the convex hull as in the rotating calipers
method. Overall, both the brute force and rotating calipersmeth-
ods have their own drawbacks when realized in Hadoop.

6.2 Farthest Pair in SpatialHadoop
Our SpatialHadoop algorithm works similar to our skyline and

convex hull algorithms as we have four steps,partitioning, filter-
ing, local farthest pair, andglobal farthest pair. In thepartitioning
step, we mainly use the SpatialHadoop partitioning scheme.In the
filtering step, we apply a specialized filtering rule for thefarthest
pair operation. The main idea is explained in Figure 6. For each
pair of cells,ci andcj , we compute theminimum(maximum) dis-
tance betweenci andcj as the minimum (maximum) possible dis-
tance between any two pointspi ∈ ci andpj ∈ cj (Figure 6(a)).
Then, given two pairs of cellsC1 = 〈c1, c2〉 andC2 = 〈c3, c4〉, we

308

δ1

δ1 δ2

δ3

δ4

δ̂

c1 c2

c3 c4

δ2

δ3 δ4

p1

q1

p2

p3

p4

q2

q3

q4

p̂

q̂

Figure 7: Closest Pair in SpatialHadoop

say thatC1 dominatesC2 if the minimum distance ofC1 is greater
than or equal to the maximum distance ofC2. In this case, the pair
C2 can be pruned as it can never contain the farthest pair in the
dataset. This is depicted in Figure 6(b), where the farthestpair of
C1 must have a distance greater than the farthest pair ofC2. In this
case, the pair of cells〈c3, c4〉 will never contribute to the final an-
swer, and hence will not be considered further for any processing.

Once all dominated cell pairs are pruned, the algorithm computes
the local farthest pair for each selected pair of cells by finding the
local convex hull, then applying the rotating calipers algorithmon
the result [33]. It is important to note that it is feasible here to use
the in-memory algorithms for local convex hull as the size ofeach
pair is bounded by twice the cell size. Finally, the algorithm com-
putes the global farthest pair by collecting all local farthest pairs
and selecting the one with largest distance. For interestedreaders,
the pseudocode of the farthest pair algorithms is in Appendix A.4.

7. CLOSEST PAIR
The closest pair (Figure 1(e)) in any dataset can be found using

a divide and conquer algorithm [25]. The idea is to sort all points
by x coordinates, and then based on the medianx coordinate, we
partition the points into two subsets,P1 andP2, of roughly equal
size and recursively compute the closest pair in each subset. Based
on the two distances of the two closest pairs found, the algorithm
then continues to compute the closest pair of pointsp1 ∈ P1 and
p2 ∈ P2 such that the distance between them is better (smaller)
than the two already found. Finally, the algorithm returns the best
pair among the three pairs found. In this section, we introduce our
closest pair algorithms for Hadoop and SpatialHadoop.

7.1 Closest Pair in Hadoop
Applying the divide and conquer algorithm described above in

Hadoop as-is will be fairly expensive. First, it requires a presort for
the whole dataset which requires, by itself, two rounds of MapRe-
duce [29]. Furthermore, the merge step requires random access
to the list of sorted points which is a well-known bottleneckin
Hadoop file system [21]. On the other hand, using the default
Hadoop loader to partition the data and compute the local closest
pair in each partition (as in the farthest pair algorithm) may pro-
duce incorrect results. This is because data is partitionedrandomly,
which means that a point in one partition might form a closestpair

(a) Uniform (b) Gaussian (c) Correlated(d) Anti-
correlated

(e) Circular

Figure 8: Synthetic data distributions

with a point in another partition. Finally, as we mentioned with
the farthest pair problem in Section 5.1, the brute force approach
would work but it requires too much computations for large files.

7.2 Closest Pair in SpatialHadoop
Our closest pair algorithm in SpatialHadoop is an adaptation of

the traditional closest pair divide and conquer algorithm [25]. The
algorithm works in three steps,partitioning, local closest pair, and
global closest pair. In the partitioning step, the input dataset is
loaded using SpatialHadoop loader which partitions the data into
cells as shown in Figure 7. As the size of each partition is only
64MB, the algorithm computes thelocal closest pairin each cell
using the traditional divide and conquer algorithm and returns the
two points forming the pair. In addition, the algorithm mustalso
return all candidate points that can possibly produce a closer pair
when coupled with points from neighboring cells. Looking atFig-
ure 7, let us assume that the closest pair found inc1 has the dis-
tanceδ1. We draw an internalbuffer with sizeδ1 measured from
the boundaries ofc1 and return all points inside this buffer (shown
as solid points) as the candidate points while all other points are
pruned. Notice that the two points forming the closest pair were re-
turned earlier and are not affected by this pruning step. As shown in
this example, each cellci may have a different buffer sizeδi based
on the closest pair found inside this cell. While the minimumof
all δ’s would be a better and tighter value to compute all buffers,
it cannot be used because the MapReduce framework enforces all
map tasks to work in isolation which gives the framework more
flexibility in scheduling the work. Finally, in theglobal closest
pair step, all points returned from all cells are collected in a single
machine which computes the global closest pairp̂, q̂ by applying
the traditional divide and conquer algorithm to the set of all points
returned by all machines.

For this algorithm to be correct, the cells must be non-
overlapping, which is true for the cells induced by SpatialHadoop
partitioning. This ensures that when a pointp is pruned, there are
no other points in the whole datasetP that are closer than the ones
in its same cell. Otherwise, if cells are overlapping, a point p near
the overlap area might be actually very close to another point q
from another cell, thus none of them can be pruned. For readers
familiar with the MapReduce programming, the pseudocode isin
Appendix A.5.

8. EXPERIMENTS
In this section we give an experimental study to show the effi-

ciency and scalability of CG_Hadoop. Both Hadoop and Spatial-
Hadoop clusters are based on Apache Hadoop 1.2.0 and Java 1.6.
All experiments were conducted on an internal university cluster of
25 nodes. The machines are heterogeneous with HDD sizes rang-
ing from 50GB to 200GB, memory ranging from 2GB to 8GB and
processor speeds ranging from 2.2GHz to 3GHz. Single machine
experiments are conducted on a more powerful machine with 2TB
HDD, 16GB RAM and an eight core 3.4GHz processor.

Experiments were run on three datasets: (1) OSM1: A real
dataset extracted from OpenStreetMap [30] containing 164Mpoly-

309

2

4

6

8

10

12

 4 8 16 32 64 128

T
im

e
 (

m
in

)

File size (GB)

Single
Hadoop

SHadoop

(a) Uniform data

2

4

6

8

10

12

 4 8 16 32 64 128

T
im

e
 (

m
in

)

File size (GB)

Hadoop
SHadoop

(b) Gaussian data

2

4

6

8

10

12

 4 8 16 32 64 128

T
im

e
 (

m
in

)

File size (GB)

Single
Hadoop

SHadoop

(c) Correlated data

2

4

6

8

10

12

 4 8 16 32 64 128

T
im

e
 (

m
in

)

File size (GB)

Single
Hadoop

SHadoop

(d) Anti-correlated data

Figure 9: Skyline experiments

40

80

120

160

250M 1G 4G 10G

T
im

e
 (

m
in

)

File size

Single
Hadoop

SHadoop

(a) Union

0

10

20

30

40
T

im
e

 (
m

in
)

Single Machine
Hadoop

SHadoop

C-pairF-pairC-HullSkyline

(b) Others

Figure 10: Experiments on OSM data

gons from the map (e.g., lakes and parks) with a total size of 80GB.
(2) OSM2: A real dataset also extracted from OpenStreetMap and
contains 1.7 Billion points from all around the world (e.g.,street
intersections and points of interest) with a total size of 52GB.
(3) SYNTH: A synthetic dataset of points generated randomlyin an
area of 1M×1M using one of the distributions:uniform, Gaussian,
correlated, anti-correlated, andcircular (See Figure 8).Uniform
andGaussianrepresent the two most widely used distributions for
modeling many real life systems.Correlatedandanti-correlated
represent the best and worst cases for skyline. Thecircular data is
used specifically for the farthest pair operation to generate the worst
case scenario where the convex hull size is very large. The largest
dataset generated is of size 128GB containing 3.8 billion points.

We use total execution time as the main performance metric.
Sometimes, the results of single machine experiments are omitted
if the operation runs out of memory or the numbers are too large
that would cause the difference between other algorithms todimin-
ish. Experimental results of the proposed operations running on the
real and synthetic datasets are given in Sections 8.1 and 8.2respec-
tively.

8.1 Real data
This section gives performance results of the proposed opera-

tions running on the OSM real datasets. The results of the polygon
union algorithm are given separately as it runs on a dataset of poly-
gons while the other four operations run on a dataset of points.

8.1.1 Polygon Union
Figure 10(a) gives the total processing time for the polygon

union operation while varying input size. Subsets of different
sizes are extracted from the OSM1 dataset by retrieving polygons
from regions of different sizes to obtain datasets of sizes 250MB,
1GB, 4GB and 10GB. As shown in Figure 10(a), the single ma-
chine polygon union algorithm does not scale and quickly fails
for large datasets with an out of memory exception. Although
the 4GB dataset fits in memory, the algorithm uses internal data
structures that require more memory causing the program to crash.
CG_Hadoop algorithms scale better as the workload is distributed
in the cluster saving both computation and memory overhead.In
addition, CG_Hadoop is much better when it runs in SpatialHadoop

due to the spatial partitioning that speeds up local and global union
steps. As described in Section 3.2, spatial partitioning helps reduc-
ing the size of intermediate data (i.e., local union output)which
affects the overall performance of the algorithm as shown.

8.1.2 Other Operations
Figure 10(b) shows the results of the different operations run-

ning on the OSM2 dataset. The results provide a clear evidence
that CG_Hadoop outperforms traditional techniques by orders of
magnitude. CG_Hadoop running on SpatialHadoop is represented
by a solid bar in the figure but it might be hard to see as the pro-
cessing times are very small compared to the single machine algo-
rithm. For both skyline and convex hull, CG_Hadoop achievesan
average of 8X and 80X speedup when running on Hadoop and Spa-
tialHadoop, respectively. Farthest pair is carried out by computing
the convex hull first, then applying the rotating calipers method on
the hull which is the preferred method when the size of the convex
is small. This causes the running time of the farthest pair and con-
vex hull to be very similar as the rotating calipers algorithm usually
takes a fraction of a second for this small convex hull. Lateron, we
show the results of farthest pair experiments when the convex hull
is too large for this method. Finally, for closest pair, onlythe result
of CG_Hadoop on SpatialHadoop is shown as the single machine
algorithm failed to run due to an out of memory exception.

8.2 Synthetic Data
In this section we give more detailed results for each operation

separately using generated data. Polygon union is not studied us-
ing synthetic data as it requires a more sophisticated generator for
polygons which goes beyond the scope of this paper. We show the
results of the four other operationsskyline, convex hull, farthest
pair, andclosest pair. We vary the generated data size from 4 GB
to 128GB and the generated data distribution as shown in Figure 8.

8.2.1 Skyline
Figure 9 shows the performance of the skyline operation for both

single machine algorithm and CG_Hadoop. The single machineal-
gorithm reads the input points one by one and whenever the phys-
ical memory buffer fills up, it runs the skyline algorithm to reduce
used buffer size. This allows the algorithm to handle data with ar-
bitrarily large sizes. Although, the single machine algorithm was
able to finish all the experiments, some results are omitted from
the figures to adjust its scale. When CG_Hadoop is deployed in
standard Hadoop, it achieves up to an order of magnitude perfor-
mance gain due to the parallelization of the computation over the
machines in the cluster. The local skyline step is very efficient in
pruning most of the points leaving only a little work to be done in
the global skyline step. CG_Hadoop can achieve up to two orders
of magnitude performance gain when deployed in SpatialHadoop.
This performance boost is due to the filter step which prunes parti-
tions that do not contribute to answer minimizing the total number
of processed blocks.

310

2

4

6

8

10

12

 4 8 16 32 64 128

T
im

e
 (

m
in

)

File size (GB)

Single
Hadoop

SHadoop

(a) Uniform data

2

4

6

8

10

12

 4 8 16 32 64 128

T
im

e
 (

m
in

)

File size (GB)

Single
Hadoop

SHadoop

(b) Gaussian data

Figure 11: Convex Hull on SYNTH dataset

8.2.2 Convex Hull
Processing times of convex hull algorithms are shown in Fig-

ure 11. The convex hull algorithm reads the input points one by
one and whenever the memory buffer is full, it runs an iteration of
the convex hull algorithm and keeps only the result which keeps
memory usage limited. The convex hull algorithm in CG_Hadoop
described in Section 5.1 runs much faster than the single machine
algorithm as the hull is computed through distributed processing in
the cluster. CG_Hadoop is even more efficient in SpatialHadoop
as the filter step allows it to minimize the total processing by early
pruning of partitions that do not contribute to answer. Although not
shown here for clarity of the figure, CG_Hadoop achieves 260X
speedup for the 128GB dataset when deployed in SpatialHadoop
compared to the traditional system.

8.2.3 Farthest Pair
There are two techniques to compute the farthest pair in

CG_Hadoop. The first one is to compute the convex hull followed
by the rotating calipers algorithm [33] which is only applicable
when the size of the convex hull is limited. We use this technique
for single machine experiments. The second technique is themod-
ified brute force approach described in Section 6.2. Figure 12(a)
compares the performance of the two approaches for different in-
put sizes. We use a generatedcircular dataset like the one in Fig-
ure 8(e) to get a very large convex hull. As shown, the first tech-
nique is more efficient whenever it is applicable as it requires a
single scan around the convex hull. However, it fails when the data
size exceeds main memory capacity as the convex hull becomes
extremely large. On the other hand, the modified brute force ap-
proach in CG_Hadoop is less efficient since it requires a lot of dis-
tance computations between points to select the pair with maximum
distance. However, it has a scalability advantage as it requires a
very small memory footprint compared to the single machine algo-
rithm. The recommendation is that the modified brute force should
be used only when the rotating calipers method is not applicable.

8.2.4 Closest Pair
Results of the closest pair experiments are shown in Figure 12(b)

for different input sizes. The traditional single machine algorithm
cannot scale to large files since it has to load the whole dataset in
memory first. In the show experiments, the traditional algorithm
fails when the input size reaches 16GB. CG_Hadoop achieves
much better performance for two reasons. First, the closestpair
computation is parallelized on cluster machines which speeds up
the whole algorithm. Second, each machine prunes many points
that no longer need to be considered for closest pair. As shown,
CG_Hadoop is much more scalable and it does not suffer from
memory problems because each machine deals with only one par-
tition at a time limiting the required memory usage to a blocksize.

20

40

60

80

 4 8 16

T
im

e
 (

m
in

)

File size (GB)

Single
SHadoop

(a) Farthest pair

2

4

6

8

10

 4 8 16 32

T
im

e
 (

m
in

)

File size (GB)

Single
SHadoop

(b) Closest pair

Figure 12: Farthest/Closest pair experiments

9. RELATED WORK
The use of MapReduce in the computational geometry field was

only discussed from a theoretical perspective [15] to suggest sim-
ulating Bulk-Synchronous Parallel (BSP) in MapReduce and use
it to solve some computational geometry problems such as convex
hull. However, no actual implementations were provided andit was
not shown how to implement other algorithms that do not follow the
BSP model. To the best of our knowledge, our work in CG_Hadoop
is the first to provide detailed MapReduce implementations of var-
ious computational geometry problems. In the meantime, there is
increasing recent interest in taking advantage of Hadoop tosupport
spatial operations. Existing approaches for supporting spatial data
in MapReduce can be classified into two broad categories: (1)Solv-
ing a specific spatial operation, and (2) Providing a framework for
spatial data.

Specific spatial operations. Existing work in this category has
mainly focused on implementing specific spatial operationsas
MapReduce jobs in Hadoop. Examples of this work has focused
on R-tree building [8], range queries over spatial points [38],
range queries over trajectory data [24],k-nearest-neighbor (kNN)
queries [2, 38], all nearest-neighbor (ANN) queries [36], reverse
nearest-neighbor (RNN) queries [2], spatial join [38], exact kNN
Join [23] and approximatekNN Join [37].

Unified framework for spatial operations. There exist four recent
systems that are built for various spatial operations: (1) Hadoop-
GIS [1] is a spatial data warehousing system focusing on process-
ing medical data. (2) Parallel-Secondo [22] is a parallel spatial
DBMS which uses Hadoop as a distributed task scheduler, while
all storage and spatial query processing are done by spatialDBMS
instances running on cluster nodes. (3)MD-HBase [27] extends
HBase to support multidimensional indexes which allows foreffi-
cient retrieval of points using range andkNN queries. (4) Spatial-
Hadoop [12] extends Hadoop with grid file and R-tree indexes and
provides new MapReduce components that allow using the indexes
in spatial MapReduce programs.

Our work in this paper, CG_Hadoop, lies in between the above
two categories. First, it does not focus on only one specific spa-
tial operation. Instead, it covers five different and fundamental
computational geometry spatial operations. Second, it does not
provide a new system. Instead, it provides efficient implementa-
tions of various computational geometry algorithms withinSpa-
tialHadoop, which achieves high performance using the provided
spatial indexes. Overall, CG_Hadoop forms a nucleus of a com-
prehensive MapReduce library of computational geometry opera-
tions. Its open-source nature will act as a research vehiclefor other
researchers to build more computational geometry algorithms that
take advantage of the MapReduce paradigm.

311

10. CONCLUSION
This paper has introduced CG_Hadoop; a suite of scalable and

efficient MapReduce algorithms for various fundamental computa-
tional geometry operations, namely,polygon union, skyline, con-
vex hull, farthest pair, and closest pair. For each operation,
CG_Hadoop has two versions; one for the Apache Hadoop sys-
tem and one for the SpatialHadoop system. All algorithms in
CG_Hadoop deploys a form of divide-and-conquer method that
leverages the distributed parallel environment in both Hadoop and
SpatialHadoop, and hence achieves much better performancethan
their corresponding traditional algorithms. In the meantime, Spa-
tialHadoop algorithms significantly outperform Hadoop algorithms
as they take advantage of the spatial indexing and components
within SpatialHadoop. Overall, CG_Hadoop forms a nucleus of
a comprehensive MapReduce library of computational geometry
operations. Extensive experimental results on a cluster of25 ma-
chines of datasets up to 128GB show that CG_Hadoop achieves
up to 29x and 260x better performance than traditional algorithms
when using Hadoop and SpatialHadoop systems, respectively.

11. REFERENCES
[1] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz.

Hadoop-GIS: A High Performance Spatial Data Warehousing System
over MapReduce. InVLDB, 2013.

[2] A. Akdogan, U. Demiryurek, F. Banaei-Kashani, and C. Shahabi.
Voronoi-based Geospatial Query Processing with MapReduce. In
CLOUDCOM, Nov. 2010.

[3] A. M. Andrew. Another Efficient Algorithm for Convex Hulls in Two
Dimensions.Information Processing Letters, 9(5), 1979.

[4] J. L. Bentley, H. Kung, M. Schkolnick, and C. D. Thompson.On the
Average Number of Maxima in a Set of Vectors and Applications.
Journal of the ACM (JACM), 25(4), 1978.

[5] M. D. Berg, O. Cheong, M. V. Kreveld, and M. Overmars.
Computational Geometry: Algorithms and Applications. Springer,
2008.

[6] K. D. Borne, S. A. Baum, A. Fruchter, and K. S. Long. The Hubble
Space Telescope Data Archive. InAstronomical Data Analysis
Software and Systems IV, volume 77, Sept. 1995.

[7] S. Börzsönyi, D. Kossmann, and K. Stocker. The Skyline Operator.
In ICDE, Apr. 2001.

[8] A. Cary, Z. Sun, V. Hristidis, and N. Rishe. Experiences on
Processing Spatial Data with MapReduce. InSSDBM, June 2009.

[9] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni.
PNUTS: Yahoo!’s hosted data serving platform.PVLDB, 1(2), 2008.

[10] K. Dalal. Counting the Onion.Random Structures & Algorithms,
24(2), 2004.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters.Communications of ACM, 51, 2008.

[12] A. Eldawy and M. F. Mokbel. A Demonstration of SpatialHadoop:
An Efficient MapReduce Framework for Spatial Data. InVLDB,
2013.

[13] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald,
V. Sindhwani, S. Tatikonda, Y. Tian, and S. Vaithyanathan.
SystemML: Declarative Machine Learning on MapReduce. InICDE,
Apr. 2011.

[14] Giraph.http://giraph.apache.org/.
[15] M. T. Goodrich, N. Sitchinava, and Q. Zhang. Sorting, Searching,

and Simulation in the MapReduce Framework. InISAAC, Dec. 2011.
[16] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial

Searching. InSIGMOD, June 1984.
[17] Apache. Hadoop.http://hadoop.apache.org/.
[18] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:

Distributed Data-Parallel Programs from Sequential Building Blocks.
In EuroSys, Mar. 2007.

[19] A. Lakshman and P. Malik. Cassandra: A Decentralized Structured
Storage System.Operating Systems Review, 44(2), 2010.

[20] G. Lee, J. Lin, C. Liu, A. Lorek, and D. V. Ryaboy. The Unified

Algorithm 1 Polygon union operation in Hadoop/SpatialHadoop
1: Load the input file using Hadoop/SpatialHadoop file loader
2: function MAP(P : Polygon) ⊲ Identity map function
3: output⇐ 〈1, p〉
4: end function
5: function COMBINE, REDUCE(1, P : Set of polygons)
6: Compute the union of the set of polygonsP
7: for Each polygonp in the uniondo
8: output⇐ 〈1, p〉
9: end for

10: end function

Logging Infrastructure for Data Analytics at Twitter.PVLDB, 5(12),
2012.

[21] H. Liao, J. Han, and J. Fang. Multi-dimensional Index onHadoop
Distributed File System.ICNAS, 0, 2010.

[22] J. Lu and R. H. Guting. Parallel Secondo: Boosting Database
Engines with Hadoop. InICPADS, Dec. 2012.

[23] W. Lu, Y. Shen, S. Chen, and B. C. Ooi. Efficient Processing of k
Nearest Neighbor Joins using MapReduce.PVLDB, 5, 2012.

[24] Q. Ma, B. Yang, W. Qian, and A. Zhou. Query Processing of Massive
Trajectory Data Based on MapReduce. InCLOUDDB, Oct. 2009.

[25] K. Mulmuley. Computational Geometry: An Introduction Through
Randomized Algorithms, volume 54. Prentice-Hall Englewood Cliffs,
1994.

[26] J. Nievergelt, H. Hinterberger, and K. Sevcik. The GridFile: An
Adaptable, Symmetric Multikey File Structure.TODS, 9(1), 1984.

[27] S. Nishimura, S. Das, D. Agrawal, and A. E. Abbadi. MD-HBase: A
Scalable Multi-dimensional Data Infrastructure for Location Aware
Services. InMDM, June 2011.

[28] D. Oliver and D. J. Steinberger. From Geography to Medicine:
Exploring Innerspace via Spatial and Temporal Databases. In SSTD,
2011.

[29] O. O’Malley. Terabyte Sort on Apache Hadoop.Yahoo!, 2008.
[30] OpenStreetMaps. http://www.openstreetmap.org/.
[31] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline

computation in database systems.TODS, 30(1), 2005.
[32] PostGIS. Spatial and Geographic Objects for PostgreSQL.

http://postgis.net/.
[33] F. Preparata and M. I. Shamos.Computational Geometry: An

Introduction. Springer-Verlag, 1985.
[34] M. I. Shamos.Computational geometry. PhD thesis, Yale University,

1978.
[35] F. Tauheed, L. Biveinis, T. Heinis, F. Schürmann, H. Markram, and

A. Ailamaki. Accelerating range queries for brain simulations. In
ICDE, Apr. 2012.

[36] K. Wang, J. Han, B. Tu, J. D. amd Wei Zhou, and X. Song.
Accelerating Spatial Data Processing with MapReduce. InICPADS,
Dec. 2010.

[37] C. Zhang, F. Li, and J. Jestes. Efficient Parallel kNN Joins for Large
Data in MapReduce. InEDBT, Mar. 2012.

[38] S. Zhang, J. Han, Z. Liu, K. Wang, and S. Feng. Spatial Queries
Evaluation with MapReduce. InGCC, Aug. 2009.

APPENDIX

A. MAPREDUCE PSEUDOCODE
This appendix gives the pseudocode for CG_Hadoop algorithms, written

in a MapReduce programming paradigm. For more information about the
MapReduce programming paradigm, please refer to [11].

A.1 Polygon Union
Algorithm 1 gives the pseudocode of the polygon union operation for

both Hadoop and SpatialHadoop. Line 1 loads the input file into the cluster
using either Hadoop or SpatialHadoop loader. The map function (lines 2-4)
emits each polygon with a constant key. This ensures that allpolygons are
sent to a single reducer that computes the union of all of them. The local
union step is implemented as a combine function (lines 5-10), which com-
putes the union of all polygons locally in each machine. The same function
is used as a reduce function that computes the union of all polygons in a

312

Algorithm 2 Skyline in Hadoop/SpatialHadoop
1: Load the input file using Hadoop/SpatialHadoop file loader
2: if File is spatially indexedthen
3: function FILTER(C: Set of cells)
4: Initialize the setS of selected cells to{}
5: for each cellc in C do
6: if c is not dominated by any cell inS then
7: Add c to S

8: Remove all cellsS dominated byc
9: end if

10: end for
11: end function
12: end if
13: function MAP(p: Point) ⊲ Identity map function
14: output⇐ 〈1, p〉
15: end function
16: function COMBINE, REDUCE(1, P : Set of points)
17: Apply skyline toP to find non-dominated points
18: for each non-dominated pointp do
19: output⇐ 〈1, p〉
20: end for
21: end function

Algorithm 3 Convex hull in Hadoop/SpatialHadoop
1: Load the input file using Hadoop/SpatialHadoop file loader
2: if File is spatially indexedthen
3: function FILTER(C: Set of cells)
4: Initialize the setS of selected cells to{}
5: for each of the four skylinesdo
6: Apply the skyline filter function to select a subset ofC

7: Add all selected cells toS
8: end for
9: end function

10: end if
11: function MAP(p: Point) ⊲ Identity map function
12: output⇐ 〈1, p〉
13: end function
14: function COMBINE, REDUCE(1, P : Set of points)
15: Apply convex hull toP to find points on the convex hull
16: for each selected pointp do
17: output⇐ 〈1, p〉
18: end for
19: end function

single reducer. Using one function as both a combine and reduce functions
is typical in most MapReduce programs that employ a combine function.

A.2 Skyline
Algorithm 2 gives the pseudocode for the skyline MapReduce algorithm

for both Hadoop and SpatialHadoop. Similar to the union algorithm, line 1
loads the data into the cluster using either Hadoop or SpatialHadoop loader.
The filter function in lines 3-11 is applied only for SpatialHadoop where
it iterates over each cell of the partitioned file and adds it to the list of
selected (non-dominated) cells in lines 7 if it is not dominated by any other
selected cell. When a cell is added (line 8), all previously selected cells
that are dominated by the new added cellc are removed from the set of
selected cells because they are no longer non-dominated. The map function
in lines 13-15 emits each point with a constant key to ensure they are all
reduced by one reducer. The combine function in lines 16-21 computes the
local skyline and outputs each selected point. The same function is used as
a reduce function to compute the global skyline.

A.3 Convex Hull
Algorithm 3 for computing the convex hull in Hadoop and Spatial-

Hadoop is very similar to the skyline algorithm. The filter function in
lines 3-9 applies the skyline filter four times and returns the union of all
cells selected. The combine/reduce function in lines 14-19computes the
convex hull of a set of points and returns all points found to be on the hull.

A.4 Farthest Pair
Algorithm 4 gives the pseudocode of the farthest pair algorithm in Spa-

tialHadoop. The file has to be loaded using the spatial file loader in line 1.
Then, the filter function in lines 2-15 scans all cell pairs and returns only
non-dominated pairs. Notice that unlike previous algorithms where the fil-

Algorithm 4 Farthest pair in SpatialHadoop
1: Load the input file using SpatialHadoop file loader
2: function FILTER(C1 , C2: Two sets of cells)
3: Initialize the setS of selected cell pairs to{}
4: for each pair of cellsk1 = 〈c1, c2〉 in C1 × C2 do
5: dominated← false
6: for each pair of cellsk2 = 〈c3, c4〉 in S do
7: Removek2 from S if the minimum distance ofk1 ≥ the maximum

distance ofk2

8: if the minimum distance ofk2 ≥ the maximum distance ofk1 then
9: Set dominated to true and break the inner loop

10: end if
11: end for
12: Add k1 to S if not dominated
13: end for
14: return S

15: end function
16: function MAP(P1 , P2: Two sets of points)
17: P ← P1 ∪ P2

18: Compute the convex hull ofP using Andrew’s monotone chain algorithm
19: Compute the farthest pair of pointsp1, p2 using rotating calipers method
20: output⇐ 〈1, 〈p1, p2〉〉
21: end function
22: function REDUCE(1, P : Set of point pairs)
23: ScanP and return the pair with the largest distance
24: end function

Algorithm 5 Closest pair algorithm in SpatialHadoop
1: Load the input file using SpatialHadoop file loader
2: function MAP(P : Set of points)
3: Compute the closest pair〈p, q〉 of P using the divide and conquer algorithm
4: output⇐ 〈1, p〉
5: output⇐ 〈1, q〉
6: Let δ be the distance betweenp andq
7: Draw a buffer with sizeδ inside the MBR ofP and return all points in the

buffer
8: end function
9: function REDUCE(1, P : Set of points)

10: Compute and return the closest pairp̂, q̂ of P using the divide and conquer
algorithm

11: end function

ter function takes a set of cells, the filter function in this algorithm takes a
pair of sets. The reason is that this operation is designed asa binary oper-
ation which operates on two files. In this particular case, the two files are
just the same file similar to a self join in DBMS. The filter function scans
all possible pair of cells in the Cartesian product ofC1 andC2 and tests
the dominance rule devised in Section 6.2 with all previously selected pairs
in S. If a previously selected (non-dominated) pair is found to be domi-
nated, it is removed fromS. If the currently tested pair is found to be not
dominated by any previously selected pair, it is added to theset of selected
(non-dominated) pairs. At the end, it returns all selected pairs.

The map function in lines 16-21 is called once for each selected pair of
cells. Again, since this is a binary operation, the signature of the map func-
tion is a little bit different than previous examples. It takes two sets of points
corresponding to all points in the two cells in a selected pair and computes
the farthest pair of points in the two sets by combining them together, com-
puting the convex hull and finally applying the rotating calipers method to
get the farthest pair of points. This pair is sent to the output as a value with
a constant key which ensures that all selected farthest pairs go to a single
reducer. Finally, the reduce function in lines 22-24 scans the list of all pairs
returned by the map phase to choose the pair with the largest distance.

A.5 Closest Pair
Algorithm 5 gives the pseudocode of the closest pair algorithm in Spa-

tialHadoop. In line 1, the file is initially loaded using SpatialHadoop loader.
No filtering is required for this operation because all cellshave to be pro-
cessed. The map function takes a setP of points in one cell and computes
their closest pair using a traditional divide and conquer algorithm. The two
points forming the closest pair are returned in lines 4 and 5.Then, all points
with distance less thanδ from the boundaries are also returned by the map
function. All these points from all mappers are combined in one reducer to
compute their closest pair using a traditional in-memory algorithm.

313

